Antpedia LOGO WIKI资讯

我国自主研制的近红外天光背景测量仪在南极投入运行

从中国科学技术大学(下简称“中科大”)获悉,由该校近代物理系核探测与核电子学国家重点实验室副教授王坚带领的团队及其合作者共同研制的近红外天光背景测量仪,目前已在南极投入运行。 据了解,王坚团队联合该校天文系副教授朱青峰以及中国极地研究中心天文学研究室,从2015年12月就开展了近红外天光背景测量仪的研制工作,并根据不同红外探测器的特点,进行了多个版本的设计和测试,解决了微弱信号探测、高增益灵敏放大、暗流及背景噪声抑制等关键技术,首先在2016年基于锑化铟(InSb)探测器完成了J,H,K波段的近红外天光背景测量仪,并完成了实验室楼顶测试,相关成果发表在国际著名的仪器杂志《科学仪器评论》上。 根据铟镓砷(InGaAs)探测器在J,H,K波段上的探测优势,研究团队在2017年基于InGaAs探测器完成了面向南极的近红外天光背景测量仪的研制,并于2017年7月在西藏阿里观测站进行了试观测,获得首批阿里的近红外天光背景数据。 ......阅读全文

中国自主研制近红外天光背景测量仪在南极投入运行

  从中国科大获悉,由该校近代物理系“核探测与核电子学国家重点实验室”王坚副教授带领的团队及其合作者,根据不同红外探测器的特点,进行了多个版本的设计和测试,解决了微弱信号探测,高增益灵敏放大,暗流及背景噪声抑制等关键技术,首先完成为基于InSb探测器完成了J,H,K波段的近红外天光背景测量仪,并完

我国自主研制的近红外天光背景测量仪在南极投入运行

  红外观测是天文研究的重要手段。长期以来,我国红外天文研究发展受限于优良台址和探测器的缺乏。随着近年来我国天文研究领域的不断扩展,中国天文界拥有红外天文观测能力的愿望也更加迫切。近期我国多项大型光学红外天文观测设备项目获得天文界支持,包括正在推进的12米光学/红外望远镜LOT(Large Opti

我国自主研制的近红外天光背景测量仪在南极投入运行

  从中国科学技术大学(下简称“中科大”)获悉,由该校近代物理系核探测与核电子学国家重点实验室副教授王坚带领的团队及其合作者共同研制的近红外天光背景测量仪,目前已在南极投入运行。  据了解,王坚团队联合该校天文系副教授朱青峰以及中国极地研究中心天文学研究室,从2015年12月就开展了近红外天光背景测

我首台红外天光背景测量仪研制成功

   记者23日从中国科学技术大学获悉,该校近代物理系“核探测与核电子学国家重点实验室”王坚课题组经过两年的攻关,攻克了红外观测微弱信号检测、高增益灵敏放大、暗流及背景噪声抑制、高真空低温封装、高精度数字锁相放大等关键技术,成功地研制出红外光谱扫描的天光背景测量装置。相关成果日前发表在该领域知名期刊

红外热像仪研究背景

  由来:1800年英国物理学家F. W.赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动

中国科大对南极望远镜远程控制

  记者近日从中国科学技术大学获悉,该校“核探测与核电子学国家重点实验室”副教授王坚课题组针对南极望远镜开发的自主观测和远程控制系统,形成对恶劣条件下观测设备的高效控制,适用于各种科研设备,构建了自主观测和远程控制框架,并进行了推广应用,特别是部署在南极的观测设备,极大地提高其观测效能。   南

红外热像仪的研发背景

  由来:1800年英国物理学家F. W.赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动

该选近红外?还是中红外?

  在论坛里,看到过某同学的疑问:很多文献都选择4000~400 cm-1 的中红外,但也有选择近红外的,选择的依据是什么?不同的人研究同样的样本,却分别选用中红外和近红外。又是怎么选择的呢?中红外和近红外的谱图信息有什么差别?   以此问题为引子,笔者实话说,看到问题的瞬间,并不能做到答案脱口

红外线是否分近红外、中红外、远红外

红外线可分为三部分近红外线、中红外线、远红外线。近红外线,波长为(0.75-1)~(2.5-3)μm之间;中红外线,波长为(2.5-3)~(25-40)μm之间;远红外线,波长为(25-40)~l500μm 之间。近红外线或称短波红外线穿入人体组织较深,约5~10毫米;远红外线或称长波红外线多被表层

分析近红外光谱仪中近红外光谱原理

  近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NI