小鼠神经干细胞分化为神经元

实验概要小鼠神经干细胞分化为神经元主要试剂无菌水、DPBS、0.05%胰蛋白酶胰蛋白酶、细胞基础培养液、 PDL、laminin、小鼠神经分化培养液(Neuron M)主要设备4孔板、12mm细胞培养玻片实验步骤① 在4孔板每个孔中放置一块12mm细胞培养玻片,每孔加入100ug/mL的PDL500μL,室温静置过夜。② 吸去PDL,用无菌水冲洗玻片,室温静置晾干;每孔加入10ug/mL的laminin500μL,37℃、5%CO2静置过夜。③ 将小鼠神经干细胞以0.05%的胰蛋白酶消化2 min,以等体积的10%FBS终止,1000 rpm离心5 min,弃上清并用Neuron M重悬细胞,以细胞密度为1×104个/ml接种于弃除laminin的四孔板。④ 每隔2天半量更换Neuron M,到第21天时,分化完成,可在镜下观察到神经元细胞与神经丝。......阅读全文

小鼠神经干细胞分化为神经元

实验概要小鼠神经干细胞分化为神经元主要试剂无菌水、DPBS、0.05%胰蛋白酶胰蛋白酶、细胞基础培养液、 PDL、laminin、小鼠神经分化培养液(Neuron M)主要设备4孔板、12mm细胞培养玻片实验步骤① 在4孔板每个孔中放置一块12mm细胞培养玻片,每孔加入100ug/mL的PDL500

NSCs定向分化为神经元的预测系统

  神经干细胞(NSCs)具有自我更新和三系分化的潜能,能被诱导分化成神经元、星形胶质细胞和少突胶质细胞,具有重要的神经中枢神经系统疾病(CNS)再生修复研究和应用价值。将NSCs定向分化为神经元一直是该领域的重要研究方向,常见的诱导药物包括有神经营养因子、小分子药物或激素等。传统的药物筛选鉴定方法

氧化石墨烯可调节多巴胺神经元分化

  近日,中科院上海生命科学研究院健康科学研究所乐卫东小组发现,纳米材料氧化石墨烯在胚胎干细胞向多巴胺神经元分化过程中可发挥重要作用。相关研究日前发表于《纳米医学》。  中脑多巴胺能神经元的退行性死亡是帕金森氏症的最显著特征,通过干细胞诱导多巴胺神经元分化并进行细胞移植治疗已经成为潜在的帕金森氏症治

GDNF影响神经元的发育和分化的作用介绍

  不同脑区在不同发育期的GDNFmRNA表达的量有所不同,如纹状体在生后零天(P0)表达量达高峰;小脑在出生时和成年期有一个短暂的高表达。随年龄的增长,中枢神经系统的GDNFmRNA水平出现明显下降趋势,到成年期,大部分区域仅有很低表达。因此,GDNF可能对发育期的多种神经元的存活和分化起重要作用

Nanomedicine:健康所发现纳米材料可调节多巴胺神经元分化

  近日,国际学术期刊《Nanomedicine》在线发表了健康科学研究所乐卫东研究组题为“Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons”的研究论文,

上海生科院等发现纳米材料可调节多巴胺神经元分化

  近日,国际学术期刊Nanomedicine在线发表了中国科学院上海生命科学研究院健康科学研究所乐卫东研究组题为Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neuro

转录因子可在脑内将胶质细胞转分化为神经元

  6月24日,中国科学院上海生命科学研究院神经科学研究所的刘月光与缪庆龙等在《神经科学杂志》上发表题为Ascl1converts dorsal midbrain astrocytes into functional neurons in vivo 的论文。这一项研究成果建立了一种在体转分化高效获得

健康所发现microRNA调节多巴胺能神经元分化新机制

  众所周知,中脑多巴胺能神经元的退行性死亡是帕金森病的最显著特征,了解其发育的分子生物学机制对探索帕金森病的发病机理以及治疗帕金森病都有着至关重要。然而,对于胚胎干细胞向多巴胺能神经元的发育过程的机制至今还不清楚。  中科院上海生命科学研究院健康所神经基因组博士研究生杨德华等在乐卫

北大研究揭示转录因子驱使神经元终末分化新机制

  Developmental Cell杂志在线发表了北京大学生命科学学院宋艳研究组题为“Mitotic implantation of the transcription factor Prospero via phase separation drives terminal neuronal d

GDNF的生物学效应影响神经元的发育和分化

不同脑区在不同发育期的GDNFmRNA表达的量有所不同,如纹状体在生后零天(P0)表达量达高峰;小脑在出生时和成年期有一个短暂的高表达。随年龄的增长,中枢神经系统的GDNFmRNA水平出现明显下降趋势,到成年期,大部分区域仅有很低表达。因此,GDNF可能对发育期的多种神经元的存活和分化起重要作用。

成纤维细胞转分化为神经元的研究取得进展

  神经干细胞以及神经元研究是神经系统疾病治疗和再生医学的前沿领域,对理解大脑的发育、可塑性以及神经系统疾病的诊断和治疗有重要价值。随着我国人口老龄化趋势的加剧,脑缺血、中风以及老年痴呆、帕金森等神经系统损伤和退行性疾病的患病比例不断增高,这些疾病中神经元的功能退化和死亡是对研究治疗和药物开发的极大

直击两大技术热点:CRISPR光活化技术诱导神经元分化

  CRISPR-Cas9 和光遗传学这两大技术经过近几年的发展,已经在许多研究领域中发光发热。而将这两者结合起来的领衔科学家无疑要算上日本东京大学的化学家Moritoshi Sato,他曾开发一种光学开关蛋白:“Magnets”(磁铁蛋白),他们将其利用在光活化技术中,开发出光激活CRISPR转录

胶质细胞向神经元转分化治疗神经性疾病的研究获进展

  4月8日,《细胞》期刊在线发表了题为《通过CRISPR-CasRx介导的胶质细胞向神经元的转分化治疗神经性疾病》的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组完成。该项研究通过运用最新开发的RNA靶向CRI

如何参与促进骨髓间充质干细胞向神经元样细胞的分化?

  近来的研究表明,microRNA在干细胞自我更新及其分化中发挥重要的调节作用。来自中国医科大学附属第一医院的邹德峰博士所在课题组认为,microRNA可能参与了干细胞定向分化为神经元的过程,可能是定向诱导分化的重要靶点。研究设计对骨髓间充质干细胞与神经干细胞或神经元差异最明显的microRNA进

Dev-Cell-|-宋艳组揭示转录因子神经元终末分化的新机制

Image credit: Zhi Ye  由抑制性组蛋白修饰H3K9me3所标记的异染色质在细胞分化过程中变得高度凝聚,其区域显著扩展 【1,2】,形成防止已分化细胞命运逆转的重要壁垒。与此相对应,H3K9me3+异染色质区域的解压缩可以极大提高细胞重编程的效率【3, 4】。过去的研究表明,H3K

BDNF人脑源性神经营养因子促进神经元存活生长和分化

  产品说明:   脑源性神经营养因子(Brain-derived neurotrophic factor ,BDNF)是是神经营养生长因子NGF家族的一员。神经营养因子家族由至少四种蛋白质组成,包括NGF、BDNF、NT-3和NT-4/5。这些分泌的细胞因子被合成为前肽,经蛋白水解处理产生成熟的

转分化的分化特点

转分化(trans-differentiation),如水母横纹肌细胞经转分化可形成神经细胞、平滑肌细胞、上皮细胞,甚至可形成刺细胞。分化程度低的神经干细胞也可形成骨髓细胞和淋巴样细胞;在肝纤维化时,肝脏星状细胞转分化成肌纤维母细胞等。

性别分化的分化条件

化学物质后缢是一种海生无脊椎动物,雌性个体像颗豆子,有一个顶端分叉的长吻,体长6㎝左右;雄性个体大小只有雌性的1/500,没有消化器官,寄生在雌性个体的子宫里。雌后缢成熟后,在海里产卵,卵孵化成幼虫。这些幼虫的性别为中性。如果落到海底生活,就发育成雌虫;如果落到雌虫的吻部,就发育为雄虫。如果把落在吻

人胚胎干细胞分化成神经前体细胞和多巴胺能神经元

实验概要人胚胎干细胞分化成神经前体细胞和多巴胺能神经元主要试剂DPBS、DMEM/F12、1.5 U/mLDispase、鼠黏连蛋白(Laminin,20 μg/mL)、1U/MlAccutase酶、人胚胎干细胞拟胚体形成培养基、神经诱导培养基(NIM)、人神经分化培养液(NDM)、FGF8

细胞的脱分化和再分化

各种植物细胞在植物体内都处于分化状态。要使植物细胞从分化状态过渡到有繁殖能力的分生状态,其细胞结构必须发生深刻的变化,否则无法完成这个过渡。这种在植物体上已分化的细胞和组织,在培养条件下逐渐恢复到分生状态的过程,叫作脱分化。已经脱分化的细胞在一定条件下,又可经过愈伤组织或胚状体,再分化出根和芽,形成

保持干细胞状态还是分化为功能性神经元,UPF1蛋白来决定

  近日加州大学科学家发现了UPF1蛋白的新功能,该蛋白能够决定神经元前体细胞是否保持干细胞状态还是分化成为功能性神经元。该研究对开发治疗诸如自闭症,精神分裂等神经系统疾病的药物有重要意义。相关报道发表在近期的Cell Reports杂志上。   该研究称UPF1能够控制无义RNA降解(non

植物细胞的脱分化和分化培养

一、实验原理 分化了的植物根、茎、叶细胞往往具有全能性,在一定条件下进行离体培养,给于一定的营养与激素,可以脱分化为愈伤组织,由愈伤组织制备成细胞悬浮液,在一定的条件下经振荡培养,逐渐形成具有两极性的胚状体,经过进一步的分化培养,给于不同的营养和激素成分,又可以生出完整的

传分化系数

中文名称:遗传分化系数英文名称:genetic differentiation coefficient定  义:根井正利(Masatoshi Nei)提出来的估测种群间和种群内遗传相似性的指数,以亚种群间的遗传分化占总的遗传多样性的比例来表示。一般用符号GST表示。应用学科:生态学(一级学科),

分化的定义

分化是指在分裂基础上晚近获得的多细胞生物个体因生存行为分工而在个体体内细胞之间形成的形态与功能的差异。这种差异体现在不同类型的细胞发育成不同的组织器官来完成的不同生物行为机能,而这些机能分工的统一协调共同完成生命个体及群体的生命组织活动。

神经元细胞根据神经元的机能分类介绍

  1.感觉(传入)神经元:  接受来自体内外的刺激,将神经冲动传到中枢神经。神经元的末梢,有的呈游离状,有的分化出专门接受特定刺激的细胞或组织。分布于全身。在反射弧中,一般与中间神经元连接。在最简单的反射弧中,如维持骨骼肌紧张性的肌牵张反射,也可直接在中枢内与传出神经元相突触。一般来说,传入神经元

植物组织培养中的脱分化和再分化

植物组织培养(plant tissue culture)的理论根据是植物细胞的全能性。但是,在一个完整的植株上,各部分的体细胞只能表现一定的形态,承担一定的功能,这是由于受具体器官或组织所在环境影响的缘故。植物体的一部分一旦脱离原来所在的器官或组织,成为离体状态时,在一定的营养、激素等外界条件下,植

植物组织培养中的脱分化和再分化

植物组织培养(plant tissue culture)的理论根据是植物细胞的全能性。但是,在一个完整的植株上,各部分的体细胞只能表现一定的形态,承担一定的功能,这是由于受具体器官或组织所在环境影响的缘故。植物体的一部分一旦脱离原来所在的器官或组织,成为离体状态时,在一定的营养、激素等外界条件下,植

细胞分化的简介

  细胞分化(cell differentiation)是指同一来源的细胞逐渐产生出形态结构、功能特征各不相同的细胞类群的过程,其结果是在空间上细胞产生差异,在时间上同一细胞与其从前的状态有所不同。细胞分化的本质是基因组在时间和空间上的选择性表达,通过不同基因表达的开启或关闭,最终产生标志性蛋白质。

细胞分化的检测

细胞角蛋白抗原(CK)实验步骤癌胚抗原(CEA,CD66e)实验步骤             

细胞群的分化

  从分子水平看,细胞分化意味着各种细胞内合成了不同的专一蛋白质(如水晶体细胞合成晶体蛋白,红细胞合成血红蛋白,肌细胞合成肌动蛋白和肌球蛋白等),而专一蛋白质的合成是通过细胞内一定基因在一定的时期的选择性表达实现的。因此,基因调控是细胞分化的核心问题。