Antpedia LOGO WIKI资讯

我国学者发现贵金属和空位对重金属离子的协同催化作用

近期,智能所黄行九研究员研究小组发现纳米复合材料中贵金属和空位对重金属离子产生的协同催化作用。小组成员利用Au/N-deficient-C3N4修饰玻碳电极实现了水中微污染物Pb(II)的高灵敏、高选择性检测。 纳米材料修饰电极对痕量重金属离子的定性定量分析是目前环境分析领域研究热点之一。石墨烯C3N4作为一种典型的二维半导体材料,被广泛应用于光催化领域,例如污染物降解、分解水制取氢气氧气、氧气还原等方面。 该研究利用在石墨烯C3N4中制造N空穴并修饰Au纳米颗粒,来制造活性位点。此外,该工作还在协同催化作用下实现了对Pb(II)的高灵敏、高选择性及高抗干扰检测。研究结果表明,Au/N-deficient-C3N4检测铅离子的灵敏度高达1223.0 μA μM-1cm-2。科研人员进一步利用X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、电子顺磁共振(ESR)以及元素分析(EA)等表征手段证明N空穴的形成,使......阅读全文

什么是协同催化?

由几种催化剂共同作用或多功能催化剂作用,以及由组分间相互协同作用而形成利于反应进行的复合活性中心的多组分催化剂的作用,称为协同催化。

什么是协同催化?

由几种催化剂共同作用或多功能催化剂作用,以及由组分间相互协同作用而形成利于反应进行的复合活性中心的多组分催化剂的作用,称为协同催化。

我国学者发现贵金属和空位对重金属离子的协同催化作用

  近期,智能所黄行九研究员研究小组发现纳米复合材料中贵金属和空位对重金属离子产生的协同催化作用。小组成员利用Au/N-deficient-C3N4修饰玻碳电极实现了水中微污染物Pb(II)的高灵敏、高选择性检测。  纳米材料修饰电极对痕量重金属离子的定性定量分析是目前环境分析领域研究热点之一。石墨

双金属协同催化合成手性氰醇衍生物研究获进展

双金属协同催化合成手性氰醇衍生物  光学活性氰醇被广泛用于合成α-羟基羧酸或酯、α-羟基醛、α-氨基酸、β-氨基醇等重要生理活性化合物,在化学制药和农药合成中均有广泛应用。通过氰基化合物对醛的催化不对称加成反应是合成光学活性氰醇及其衍生物的有效方法,常用的催化剂包括生物催化剂酶和人工

大连化物所:实现单原子催化剂光热协同催化乙炔半加氢

  近日,中科院大连化物所催化与新材料研究中心(1500组)张涛院士、乔波涛研究员等与太阳能科学利用研究中心(1600组)李仁贵研究员等合作,在单原子光热催化乙炔半加氢反应研究方面取得新进展。合作团队通过控制单原子与纳米粒子间金属—载体强相互作用(SMSI)的发生条件,实现包覆纳米粒子的同时暴露单原

上科大发表Science:铈基催化剂和醇催化剂协同催化体系

   上海科技大学物质科学与技术学院左智伟科研团队在光促进甲烷转化这一重要能源化工领域取得突破性进展:他们成功发展了一种廉价、高效的铈基催化剂和醇催化剂的协同催化体系。这一基础研究领域的突破,解决了利用光能在室温下把甲烷一步转化为液态产品的科学难题,为甲烷转化成高附加值的化工产品(例如火箭推进剂燃料

合成聚酯生物医用材料的协同催化策略

  脂肪族聚酯类高分子材料是一类重要的合成医用高分子聚合物,具有良好的生物相容性和生物可降解性,广泛应用于手术缝合线、植入内固定器械、药物缓释等方面。其中应用最广泛的聚酯材料包括聚丙交酯 (PLA )、聚乙交酯 ( PGA )、聚戊内酯 (δ-PVL )及聚己内酯 (ε-PCL )等。对于这类广泛应

福建物构所协同催化效应研究获进展

  中科院福建物质结构研究所结构化学国家重点实验室宋玲研究员领导的课题组在福建省自然科学基金项目的资助下,利用该组自行设计合成的手性磷酰胺配体(J. Org. Chem. 2012, 77, 10427-10434)催化锌试剂对醛不对称加成反应,在使用10mol%廉价的非手性季铵盐Bu4NB

《nature nanotechnology》封面故事:单中心近邻原子协同催化

  近日,中国科学技术大学合肥微尺度物质科学国家研究中心和化学与材料科学学院曾杰教授研究团队,通过构筑高铂负载量的铂-硫化钼原子级分散催化剂,揭示出单中心近邻原子协同催化作用机制,且该协同作用是通过近邻金属原子之间的配位硫原子体现出来的。该成果作为封面文章以“Synergetic interacti

金属氧化物催化剂与金属催化剂的区别

金属氧化物催化剂与金属催化剂的区别:1、主要催化活性组分不同。金属氧化物催化剂的主要催化活性组分是金属氧化物。金属催化剂的主要催化活性组分是金属。2、作用及应用不同。金属氧化物催化剂广泛用于氧化还原型机理的催化反应;主族元素的氧化物多数用于酸碱型机理的催化反应(见固体酸催化剂),包括氧化、脱氢、加氢