基于氮硫共掺杂空心碳纳米带的高效钠离子电容器

近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其团队联合湖南大学教授马建民研发出基于氮硫共掺杂空心纳米带的钠离子电容器,并获得高容量和长循环寿命。在5A/g的高电流密度下循环10000次后,容量保持率接近100%。相关研究成果以Hollow Carbon Nanobelts Co-Doped with Nitrogen and Sulfur via a Self-Templated Method for a High-Performance Sodium-Ion Capacitor(《自模板法制备氮硫共掺杂空心纳米带用于高性能钠离子电容器》)为题在线发表于国际材料期刊Small(DOI: 10.1002/smll.201902659)。 锂资源储量有限,且分布极为不均,使得其成本较高,从而限制了其在储能等领域的大规模应用。由于钠储量丰富、与锂接近的电化学特性,使得钠离子储能器件在规模储能等领域具......阅读全文

基于氮硫共掺杂空心碳纳米带的高效钠离子电容器

  近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其团队联合湖南大学教授马建民研发出基于氮硫共掺杂空心纳米带的钠离子电容器,并获得高容量和长循环寿命。在5A/g的高电流密度下循环10000次后,容量保持率接近100%。相关研究成果以Hollow Carbon Nanobe

日本首次合成碳纳米带

   日本名古屋大学的研究组最近首次成功合成了国际学界60年前理论上提出的筒状碳分子“碳纳米带”。碳纳米带比同样为筒状结构的碳纳米管(CNT)短,用于铸模可获得期望结构的碳纳米管,将促进碳纳米管的迅速普及。该成果发表在4月14日的《科学》杂志的电子版上。   研究组在合成无扭曲带状分子的基础上,设计

苏州纳米所在碳纳米材料高能柔性电容器中取得进展

  随着现代科学技术的发展,柔性、可穿戴、可折叠、智能化是电子设备发展的主流方向,为电子产品提供能量的储能器件也逐步向轻、薄、韧等方向发展。柔性超级电容器是一种储能器件,具有高容量、充放电速度快、安全环保等特点,在新兴的电子智能设备等高新技术上有着广阔的应用前景。碳纤维和碳纳米管纱布等碳纺织品作为柔

新型纳米碳材料在超级电容器领域的应用研究取得系列进展

  碳材料以其优异的性能而成为材料领域的研究热点之一,国内外材料科学工作者围绕新型纳米碳材料的可控制备及其在超级电容器等化学储能器件中的应用,开展了大量的研究工作。在中科院“百人计划”和国家自然科学基金项目支持下,中国科学院兰州化学物理研究所固体润滑国家重点实验室阎兴斌研究员带领的研究团队自2009

分级多孔碳结构作为超级电容器电极材料

  由于碳材料优良的导电性,可裁剪性,价格低廉,它已被广泛研究作为超级电容器的电极材料。几十年来,碳基超级电容器电极的电容一般保持在100和200 F g-1之间。近来,一种被称为分级多孔碳的新型碳材料,其电容超过了300 F g-1,该类材料实现了传统碳材料在超级电容器应用中的新突破。分级多孔碳含

AFM纳米碳管探针

纳米碳管探针    由于探针针尖的尖锐程度决定影像的分辨率,愈细的针尖相对可得到更高的分辨率,因此具有纳米尺寸碳管探针,是目前探针材料明日之星。纳米碳管(carbon nanotube)是由许多五碳环及六碳环所构成的空心圆柱体,因为纳米碳管具有优异的电性、弹性与轫度, 很适合作为原子力显微镜的探针针

苏州纳米所柔性超级电容器研究获进展

  随着柔性电子学的发展,可穿戴电子设备正在飞速进入人们的生活。为了实现可穿戴器件的产品化,其供能部件也需要柔性化和高性能化,因此,高性能的柔性储能器件将越来越显示出其潜在的市场价值。超级电容器作为一种新型的电能存储器件,能量密度高于传统的平行板电容器,功率密度和使用寿命优于锂离子电池,因而被广泛研

定制纳米碳管传送基因

  通过向个体细胞和组织内插入基因来治疗疾病的基因治疗已经成为了一个不断创新的技术。它所面临的挑战是如何把治疗核酸有效并安全的植入到目标细胞和器官中去。在最近开发的合成媒质中,碳纳米管作为传送载体具有可靠性。这是因为它们有高纵横比以及改变细胞膜位置的能力,所以成为一种不错的选择。但问题是它们会在活的

碳纳米让电池更耐用

  日前,辽宁大连化物所燃料电池催化剂贵金属替代研究获突破。该所包信和院士带领的团队近期创造性地给金属铁纳米催化剂穿上了碳纳米层“铠甲”,极大地提高了铁基催化剂在燃料电池中的稳定性和抗中毒能力,为未来非贵金属催化剂最终在燃料电池中的应用探索了方向,也为燃料电池的大规模应用带来了新希望。   众所周

纳米活碳催化高效农业

  “中国60年化肥施用量增百倍,有毒物质危及食品安全”,“化肥的利用率仅40%左右,大部分都形成了污染”,“ 长江生态系统已经崩溃,175种特有物种现在一半都不到”,“土壤重金属含量超标,何谈有机农业”。近段时间,媒体上有很多关于食品安全、生态环境的报道,越来越引起人们的关注和担忧。解决土壤污

美首次“种”出石墨烯纳米带

  据物理学家组织网7月19日(北京时间)报道,美国科学家首次在金属上从头开始逐个原子地合成出了石墨烯纳米带——在熔炉中生长出的石墨烯的同轴六边形。发表在最新一期《美国化学会志》上的研究报告称,这种石墨烯“洋葱圈”有望用于锂离子电池和高级电子设备内。   该研究的领导者之一、莱斯大学的物理学家詹姆

用于高效能量存储的碳基超级电容器

  化石能源的日益消耗及其不断上涨的价格已经引起了人们的高度关注,因此发展环境友好的能源产生方式及储能技术就显得尤为迫切。近期,电化学超级电容器和电池等储能器件方面的研究如火如荼。  现代电子器件的发展强烈地依赖于具有高能量密度和功率密度的高效能源。就这一点而言,电化学超级电容器(ESCs)展现出了

可拉伸单壁碳纳米管超级电容器问世

  可拉伸的电子器件由于其在生物医疗(如电子化“皮肤”)、电子(如可穿戴式电子设备如苹果公司新注册的“Bi-Stable环弹性屏幕”、电子纸显示器)、电源(如便携电池)等领域展现出的绝佳应用前景而倍受关注。而作为这些电子设备重要组成部分,其能量的储存和供给单元也需要提供良好的可拉伸性。   来自新

碳纳米材料家族增加新成员——弯曲纳米石墨烯

  继球状的富勒烯、筒状的碳纳米管和片状的石墨烯之后,碳纳米材料家族又有了新成员。日本研究人员开发出一种像马鞍一般弯曲的碳纳米分子,有望在电子元件和医疗等领域得到应用。   名古屋大学教授伊丹健一郎率领的研究小组在15日的《自然・化学》杂志网络版上报告了这一成果,他们将这种碳纳米分子命名

我国学者利用三维网络碳材料研制双碳钠离子混合电容器

  混合电容器技术将二次电池和超级电容器进行“内部交叉”,兼具高能量密度、高功率密度及长寿命等特性。目前,锂离子混合电容器已实现商业化应用。但锂资源不足和分布不均会限制锂基储能器件大规模应用及可持续发展。钠钾资源丰富、分布广泛、价格低廉,与锂的物理化学特性相似,使得钠钾离子储能器件有望成为锂基储能体

碳氮双键的红外吸收带是多少

中δ值区δ90-160ppm(一般情况δ为100-150ppm)烯、芳环、除叠烯中央碳原子外的其他SP2杂化碳原子、碳氮三键碳原子都在这个区域出峰。(3)低δ值区δ<100ppm,主要脂肪链碳原子区:①不与氧、氮、氟等杂原子相连的饱和的δ值小于55ppm;②炔碳原子δ值在70-100ppm,这是不饱

纳米碳催化研究取得重要突破

纳米碳催化研究取得重要突破        据了解,我国是一个聚氯乙烯(PVC)生产和消耗大国,2013年生产1529.5万吨,其中75%是由煤经电石法制得的乙炔再在氯化汞(HgCl2)催化剂作用下经过氢氯化反应过程生产而来。这一过程造成了大量的汞(俗称“水银”)排放,对环境造成严重的污染。联合国20

纳米活碳作物增产效果佳

  连云港经济技术开发区丽港稀土实业有限公司开发的纳米活碳液和纳米活碳粉日前获得国家专利。   据该公司技术负责人介绍,他们研发的碳液植物生产剂已先后在水稻、黄瓜、草莓、花卉等农作物上进行纳米活碳试验均获得成功。水稻每亩加入3%。的碳粉、在降低肥料35%施用情况下,可增产17%。蝴蝶兰、玫瑰等花卉

纳米硅碳研发机构落户福建

  5月13日,中科院海西研究院与福建远翔化工有限公司签订协议共同建设纳米硅碳材料工程技术中心,国内首家专门从事研究开发纳米硅碳材料与应用技术的研发机构正式落户福建邵武。   地处邵武的福建远翔化工有限公司董事长王承辉高兴地告诉记者,“纳米硅碳材料工程技术中心”项目总投资6000万元,预期产值达2

哈工大团队在《纳米快报》上发表碳基储能研究论文

  近日,以哈尔滨工业大学为第一署名单位,能源学院高继慧教授团队孙飞副教授为第一作者的题为“原位高含量氮掺杂碳纳米球体合成增强正负极电容储存活性构筑4.5 V高能量密度全碳锂离子电容器”的研究论文发表于纳米领域著名刊物《纳米快报》上。  该研究基于连续的气溶胶辅助喷雾合成技术获得了高浓度氮掺杂的纳米

科研团队制成世界最薄丝素纳米纤维带

  东华大学纤维材料改性国家重点实验室教授张耀鹏、邵惠丽团队与纽约州立大学石溪分校教授Benjamin S. Hsiao合作提出了全新的蚕丝多级结构模型,并成功研制世界上最薄丝素纳米纤维带。近日,该成果以全文形式发表于《美国化学学会—纳米》。  作为蚕丝多级结构的基础构筑单元,丝素纳米纤维对人造蜘蛛

高能镍碳超级电容器问世-解决电动车电源问题

  你看满大街上跑的汽车,有几辆是电动车?  2008年北京奥运会,2010年上海世博会,人们看见电动汽车上路了,跑起来了。让人振奋!  可是,到了今天,电动汽车还是“雾里看花”。  怎么回事呢?  周国泰院士斩钉截铁地说,问题出在电动车的电源上。电动车的电池技术还没有“过关”。  

高性能石墨烯基超级电容器研究中取得进展

  超级电容器作为新型储能器件,具有功率密度高、充电时间短、使用寿命长等优点,但其能量密度一直受限于电极材料的性能。中科院电工研究所马衍伟课题组通过金属镁热还原二氧化碳气体,成功制备出富含孔道结构的石墨烯电极材料。   基于此石墨烯研制的超级电容器,在水系和有机电解液中表现出优异的功率特性和循环寿

表面化学方法实现碳碳双键和三键碳纳米结构直接制备

相比于传统溶液化学,表面化学在原子级精准制备碳纳米结构方面展现出许多优势,其中最为广泛应用的是通过脱卤偶联反应实现新颖碳纳米结构的可控制备。然而截至到目前,表面化学反应用到的卤化物前驱体分子大多还局限在同一个碳原子上只修饰一个卤素原子的范畴。近期,许维教授课题组创新性地提出并设计了一系列前驱体分子,

碳氮双键的红外吸收带的范围多少

碳氮双键的红外吸收带的范围:1690~1640碳氮双键 double-bonded carbonic acid能与被萃取物形成溶于有机相的萃合物的化学试剂。

美大学研究发现树木纤维素可变为高储能设备

  一个基本的化学发现将很快使树木在高科技储能装置中发挥出重要作用。美国俄勒冈州立大学的研究人员发现,通过简单的化学方法可把地球上最丰富的有机聚合物、树的一个关键组成部分――纤维素,转变成超级电容器的构件。该研究结果刊登在最新一期的《纳米快报》上。   超级电容器是具有非凡的高功率的能量设备,

锂电负极材料纳米碳管的简介

  纳米碳管是近年来发现的一种新型碳晶体材料,它是一种直径几纳米至几十纳米,长度为几十纳米至几十微米的中空管,其性能如下:  纳米管的制备有直流电弧法和催化热解法。  催化热法是将20%H2+80%CH4混合气体在Ni+Al2O3的催化剂颗粒上于500℃热解,将热解的样品研磨后,加入热硝酸(80℃)

双重纳米结构非晶碳薄膜问世

  近日,中科院兰州化学物理研究所固体润滑国家重点实验室空间润滑材料组,在国际上首次制备了一种具有双重纳米结构的非晶碳薄膜材料。试验表明,该种薄膜材料具有极为优异的回弹性(弹性恢复系数高达95%),且在真空条件

俄勒冈州立大学发现可制造超级电容器的低成本新材料

  科学家们宣称,树木很快就会在能量存储设备上扮演重要角色。俄勒冈州立大学的化学家发现,纤维素——地球上最丰富的有机聚合物,树的一个关键组成元素——在加热炉中氨氛围下加热,可以成为超级电容器的构建材料。   超级电容器是大功率能量存储设备,具有广泛的工业应用,其使用一直受限于高质量碳电极的制备困难

王浩敏团队制备成功石墨烯纳米带

   3月10日,记者从中科院上海微系统所获悉,该所信息功能材料国家重点实验室王浩敏团队在国际上首次通过模板法在六角氮化硼沟槽中实现石墨烯纳米带可控生长,成功打开石墨烯带隙,并在室温下验证了其优良的电学性能,为研发石墨烯数字电路提供了一种可能的技术路径。3月9日,相关研究成果发表于《自然—通讯》杂志