Antpedia LOGO WIKI资讯

李开喜团队低值煤沥青构筑高性能电容炭研究获进展

焦化行业产生大量低值的煤沥青副产品,如何使其高附加值化一直是各方关注的焦点,利用其灰分低、残炭率高等特点而制备的多孔电极炭,可用于电化学储能等新兴能源领域。然而煤沥青高温成炭过程中需经历液相炭化,故对其微观形貌和孔隙结构的调控极其困难,加之稠环分子的反应惰性又使其炭产品表面化学性质难以裁剪。 近年来,中国科学院山西煤炭化学研究所702课题组研究员李开喜及其带领的科研团队,通过对沥青分子精准设计,无模板构筑了一系列纳米结构电极材料(图1),组装了高性能柔性全固态电容器和非对称电容器,实现其能量密度和循环稳定性的显著提升,且交联自组装策略还成功应用于沥青基球状活性炭生产线上,取得了基础和应用双突破。 对煤沥青组成的精细化认识是其高效利用的前提,通过构建合适的溶剂体系将其切割为组成结构相近的各族组成,依据沥青中喹啉可溶物族组分的分子特点,经磺化改性和常规活化后构筑了面向全固态的超级电容器应用的纳米层状炭(Journal of ......阅读全文

纳米改性煤沥青研制成功

  国日用化学工业研究院与山西喜跃发公司近日签订纳米煤沥青在道路中的应用技术开发及产业化示范合作战略项目,对中国日化院研发的纳米改性煤沥青进行转化推广。   纳米改性煤沥青是将焦炭副产品煤沥青经过纳米技术改性生产的高等级筑路材料,用于补充或替代道路石油沥青。路用纳米改性煤沥青属于新型筑路沥青材料,

环氧煤沥青漆 环氧煤沥青涂料

但是如果在这个时候我们能够根据环氧煤沥青涂料本身那个特性让我们自己有一个比较好的分析那么我们也就知道应该怎么办了,其实本身涂料的用处是非常多的,我们在建筑材料的时候不光是能够进行一个装饰的作用,同时这样的一个涂料也能够有更多功能性的作用。比如有一些环氧煤沥青涂料具有的防腐的功能的,如果我们想要保护我

李开喜团队低值煤沥青构筑高性能电容炭研究获进展

  焦化行业产生大量低值的煤沥青副产品,如何使其高附加值化一直是各方关注的焦点,利用其灰分低、残炭率高等特点而制备的多孔电极炭,可用于电化学储能等新兴能源领域。然而煤沥青高温成炭过程中需经历液相炭化,故对其微观形貌和孔隙结构的调控极其困难,加之稠环分子的反应惰性又使其炭产品表面化学性质难以裁剪。  

山西煤化所在柔性多孔纳米炭纤维无纺布制备取进展

  将煤液化过程中的主要副产物煤液化残渣进行高质高值化利用对煤液化过程的资源利用率和经济性有着不可低估的影响,是完善煤炭直接液化技术的一个重要课题。煤液化残渣典型的组成为:重质油、沥青烯、前沥青烯和四氢呋喃不溶物(包括未反应的煤和矿物质)。其中沥青烯和前沥青烯分子均主要由 C元素组成,基本结构单元中

环氧煤沥青漆特性及用途

在利用煤沥青改性环氧树脂制成的环氧煤沥青防腐漆时,综合了煤焦油沥青和环氧树脂的优点,得到耐酸、耐碱、耐水、耐溶剂、耐油和附着性、保色性、热稳定性、电绝缘性良好的涂层。该涂料是60年代出现的一种防腐涂料。随着环氧树脂产量的增大,该涂料在美国、日本、法国获得迅速发展,已占环氧树脂涂料的一半。应用领域包括

生产石墨电极的原材料有哪些呢?

  石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、焙烧、浸渍、石墨化、机械加工等一 系列工艺过程生产出来的一种耐高温石墨质导电材料。  石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一

环氧煤沥青漆产品使用说明

前言:环氧煤沥青防腐涂料,组份以环氧树脂为基料,加入煤沥青、防锈颜料、增韧剂、流平剂、防沉剂等制成,乙组份为固化剂,施工时按比例调配。该产品具有粘结力强,耐盐碱、耐海水、耐土壤微生物腐蚀、抗植物根茎穿透性等极好的性能,与玻璃纤维布复合使用可增强其机械性能。主要用于埋地或水下的输油、输气、输水、热力管

煤沥青微量元素测定方法标准发布

  从镇江检验检疫局传来消息,由该局主持研究的《煤沥青微量元素测定方法 电感偶合等离子体-原子发射光谱法》由国家质检总局正式发布,作为国家行业标准于2010年7月16日正式实施。  该标准适用于煤沥青、石油焦及煅后石油焦中钙、铁、钠、镍、硅、钛、钒的测定,具有一次性检测

关于锂电池负极材料纳米材料的结构介绍

  纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的

纳微分级结构的电极材料的优点

研究发现:具有纳微分级结构的电极材料可望具有优异的电化学性能。纳微分级结构是由具有纳米单元结构成的整体尺度在微米级的结构体系。 纳微分级结构材料主要包括纳米自组装结构材料、介孔材料以及纳米结构复合材料等 。这种结构的材料兼具纳米材料和微米材料的优点,不仅具有大的比表面积、短的锂离子扩散和电子传导路径