Antpedia LOGO WIKI资讯

萃取根据什么原理进行的?

萃取是有机化学实验室中用来提纯和纯化化合物的手段之一。通过萃取,能从固体或液体混合物中提取出所需要的化合物。这里介绍常用的液-液萃取。基本原理:利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。同时,在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中,实验证明,在一定温度下,该化合物与此两种溶剂不发生分解、电解、缔合和溶剂化等作用时,此化合物在两液层中之比是一个定值。不论所加物质的量是多少,都是如此。用公式表示。CA/CB=KCA.CB分别表示一种化合物在两种互不相溶地溶剂中的摩尔浓度。K是一个常数,称为“分配系数”。有机化合物在有机溶剂中一般比在水中溶解度大。用有机溶剂提取溶解于水的化合物是萃取的典型实例。在萃取时,若在水溶液中加入一定......阅读全文

现代化萃取技术在水环境监测中的运用

  固相萃取技术是近年发展起来的一种现代化萃取技术,由于这种萃取技术具有很多优点,因此越来越受到环境监测工作者的青睐。我国工业化发展速度相当迅猛,这将更为理想的经济效益提供给社会,但是环境也受到不同程度的污染,其中最为突出的问题就是水源污染。在水资源当中,污染物主要以沉积的形式存在。利用相应的方式处

固相微萃取技术在纺织品检测中的应用

  一、固相微萃取技术纺织品检测的原理   固相微萃取技术简称SPME,属于非溶剂选择性萃取方法的范畴。固相微萃取采用的是形状类似于色谱注射器的小巧型进样器,该工具主要由手柄以及萃取头(纤维头)组成,固相微萃取过程中,将纤维头在样品溶液以及顶空气体中浸入,然后通过一定速率的搅拌来实现两相间

高效液相色谱样品预处理地位

  高效液相色谱仪分析样品的预处理方法有过滤、离心、加速溶剂萃取、超临界流体萃取、固相萃取、固相微萃取、液相微萃取和衍生化等。01过滤  常用的滤膜材质有纤维素、聚四氟乙烯和聚酰胺。其中聚酰胺应用最广,是亲水材料,适合水溶液的过滤,不被HPLC常用溶剂所腐蚀,不含添加剂。  加速溶剂萃取  1、原理

高效液相色谱仪分析样品的预处理方法

  高效液相色谱仪分析样品的预处理方法有过滤、离心、加速溶剂萃取、超临界流体萃取、固相萃取、固相微萃取、液相微萃取和衍生化等。  一、过滤:  常用的滤膜材质有纤维素、聚四氟乙烯和聚酰胺。其中聚酰胺应用最广,是亲水材料,适合水溶液的过滤,不被HPLC常用溶剂所腐蚀,不含添加剂。  二、加速溶剂萃取:

液相色谱仪分析样品的预处理方法

液相色谱仪分析样品的预处理方法有过滤、离心、加速溶剂萃取、超临界流体萃取、固相萃取、固相微萃取、液相微萃取和衍生化等。一、过滤:常用的滤膜材质有纤维素、聚四氟乙烯和聚酰胺。其中聚酰胺应用最广,是亲水材料,适合水溶液的过滤,不被HPLC常用溶剂所腐蚀,不含添加剂。二、加速溶剂萃取:1、原理:加速溶剂萃

固相微萃取技术及其在法医毒物检测中的应用

固相微萃取技术及其在法医毒物检测中的应用摘    要:固相微萃取技术是一种新型的样品前处理技术, 具有操作简单、无需溶剂、设备低廉、能够直接用于色谱和色质联用仪进样等特点, 自出现以来就受到人们广泛关注, 目前已在食品、医药、环境、法医毒物等方面的检测中得到了

液相色谱仪分析样品的液相微萃取预处理

液相色谱仪分析样品的液相微萃取预处理是基于样品和微升级甚至纳升级有机溶剂之间的分配平衡原理,集采样、萃取和浓缩于一体的环境友好的样品微萃取方法,特别适合环境样品中痕量和超痕量污染物的分析。液相微萃取有直接液相微萃取、中空纤维液相微萃取和顶空液相微萃取等。一、直接液相微萃取:1、原理:利用悬挂在色谱微

双水相萃取水蛭多肽的方案

双水相萃取 3.1 双水相萃取的原理及特点 3.1.1 双水相萃取的原理 双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度

液-液萃取分离操作方法

常用的萃取方法可分为单级萃取法(间歇萃取法)和多级萃取法,多级萃取法按两相接触的方式不同又可分为错流萃取法(连续萃取法)和逆流萃取法,后者需要专门的仪器装置。下面介绍间歇萃取法的操作技术。1.萃取选比溶液总体积大1倍的梨形分液漏斗(一般用60~125mL容积的即可)活塞部分不涂凡士林等油膏,以免有机

多孔整体材料在固相微萃取中的应用研究进展

实际样品基底和组成复杂、干扰物质多、目标物含量较低,因此难以直接对其进行分析检测。为了减少样品基底的干扰和提高分析检测灵敏度,在进行分离分析前必须进行合适的样品前处理。由于传统的样品前处理技术如离心、蒸馏、过滤、液-液萃取等方法存在劳动强度大、操作时间长、步骤繁琐、使用有机溶剂量大等缺点,因此发展简

浊点萃取技术在药物分析中的应用研究

新型样品前处理技术近年来成为环境样品、生物样品和医药分析领域的研究热点。近年来发展速度较快的前处理技术有液液微萃取、固相微萃取、超声辅助萃取、分散液液微萃取和浊点萃取等,其中浊点技术由于富集倍数高、不需要使用有机溶剂、操作简单和对环境友好等特点而被用于药物和环境样品前处理中。本论文的内容是将浊点萃取

中草药提取技术的开发应用

中草药所含成分十分复杂,既有有效成分,又有无效成分和有毒成分。为了提高中草药的治疗效果,就要尽最大限度提取有效成分,去除无效成分及有毒成分。因此,中草药提取对于提高中药制剂的内在质量和临床疗效最为重要。但常用的提取方法(如煎煮法、回流法、浸渍法、渗漉法等)在保留有效成分,去除无效成分方面,存在着有效

全自动在线固相微萃取测定水中氯霉素

本方法采用Waters OA在线固相萃取装置,简化复杂的离线固相萃取操作,降低人工成本,提高分析效率,该方法灵敏度高,可移植性好,可满足氯霉素在水体的痕量快速检测。 抗生素面世以来,人们找到抑制细菌生长的方法,大卫教授于1947年发现可产生氯霉素的链霉菌,1949年氯霉素引入临床使用。近代,氯霉

超临界萃取的技术原理及应用

  超临界萃取的技术原理及应用   一、超临界萃取的技术原理   利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得

超临界萃取的技术原理及应用

  超临界萃取的技术原理及应用   一、超临界萃取的技术原理   利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得

ASE快速溶剂萃取——解决固体、半固体样品前处理的技术

样品前随着现代化学分析技术的飞速发展,分析手段越来越向着快速、微量、准确、自动的方向发展,样品的分析时间基本在20-30分钟,痕量样品的检测可达ppb-ppt,但在样品的前处理方面,仍存在很大的问题,数小时数十小时的处理时间,大量的溶剂消耗和废液的处理,其结果造成萃取效率低、人为误差大,萃取成

ASE快速溶剂萃取—解决固体、半固体样品前处理的新技术

  样品前随着现代化学分析技术的飞速发展,分析手段越来越向着快速、微量、准确、自动的方向发展,样品的分析时间基本在20-30分钟,痕量样品的检测可达ppb-ppt,但在样品的前处理方面,仍存在很大的问题,数小时数十小时的处理时间,大量的溶剂消耗和废液的处理,其结果造成萃取效率低、人为误差大,萃取成本

快速溶剂萃取的原理及技术要点

快速溶剂萃取的基本原理 1、温度增加升高温度对于基体效应的克服有所帮助,使解析动力学加快,溶剂黏度降低,提升溶剂分子在机体中的扩散速度,使萃取效率得以提升。50~200℃是快速溶剂萃取仪的允许温度范围,75~125℃为该仪器常规的使用温度,常用100℃来萃取环境当中的一般污染物。以往实验证

固相萃取与固相微萃取应用之原理

一 固相萃取固相萃取(Solid Phase Extraction,SPE)是一种基于液-固分离萃取的试样预处理技术,由柱液相色谱技术发展而来。SPE技术自70年代后期问世以来,由于其、可靠及耗用溶剂量少等优点,在环境等许多领域得到了快速发展。在国外已逐渐取代传统的液-液萃取而成为样品预处

海产品中PAK的快速分析

墨西哥湾的石油灾难留下了严重后果,除了危害海洋环境外,消费者也要开始面临这样的问题:来自海洋的食品是否还能达到安全标准?而Gerstel的搅拌棒吸附萃取方法能够进行有效、简易和方便的自动化萃取,实现对众多的海洋生命形态组织中多环芳烃的定量测定。 尽管有些人充满信心,但其实没有人能够预言,这

海产品中PAK的快速分析

墨西哥湾的石油灾难留下了严重后果,除了危害海洋环境外,消费者也要开始面临这样的问题:来自海洋的食品是否还能达到安全标准?而Gerstel的搅拌棒吸附萃取方法能够进行有效、简易和方便的自动化萃取,实现对众多的海洋生命形态组织中多环芳烃的定量测定。 尽管有些人充满信心,但其实没有人能够预言,这

固相萃取与固相微萃取比较

  固相萃取  (Solid Phase Extraction,SPE)是一种基于液-固分离萃取的试样预处理技术,由柱液相  固相萃取  (Solid Phase Extraction,SPE)是一种基于液-固分离萃取的试样预处理技术,由柱液相色谱技术发展而来

固相微萃取-液相色谱联用技术研究进展(一)

摘 要 本文较系统地介绍了固相微萃取-液相色谱联用技术的原理、特点、发展现状及其发展趋势,并对该技术在样品前处理,尤其是环境样品前处理中的应用作了较详细的综述。Progress of Coupling Solid2Phase Microextraction toLiquid Chromatograp

固相萃取与固相微萃取

固相萃取(Solid Phase Extraction  SPE)就是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。  与液-液萃取相比固相萃取有很

新型液相微萃取技术及其在痕量/超痕量元素的应用

众所周知,元素的毒性或生物可利用性不仅与元素的总量有关,而且与其存在形式密切相关。因此,环境和生物样品中痕量元素及其形态分析具有重要意义。电感耦合等离子体质谱(ICP-MS)具有灵敏度高、线性范围宽、可多元素同时测定等优点,是痕量元素及其形态分析最灵敏的检测手段。但是,采用ICP-MS对实际样品进行

超临界萃取的技术原理及应用

   一、超临界萃取的技术原理   利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但

分壁式精馏塔萃取精馏的模拟与实验研究

分壁式精馏塔是采用立式隔板把塔从中间分隔开,实现了一塔具有两塔的功能,从而在一个塔内可以完成三元混合物的分离,以达到节能降耗的目的。 本文以分壁式精馏塔为研究对象,采用Aspen Plus流程模拟软件对分壁式萃取精馏塔进行模拟研究,并自行设计和建立分壁式精馏塔的小试实验装置,进行实验研究。首先分析了

超临界萃取的技术原理及应用

一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控

快速溶剂萃取的原理和应用

加速溶剂萃取的原理及应用 牟世芬 (中国科学院生态环境研究中心  北京 100085) (Dionex中国有限公司应用研究中心 北京 100085) E-mail: shifenm@mail.rcess.ac.cn 摘要  加速溶剂萃取是一项新颖的样品前处理

如何评价固相萃取材料的柱穿透体积

洗脱率与吸附剂、洗脱溶剂、保留体积、 流速等因素都有关,一般可达90%~98%。相关资料:1、固相萃取柱(英文, 简称SPE column,或Solid Phase extraction Cartridges,简称SPE cartridges)是从层析柱发展而来的一种用于萃取、分离、浓缩的样品前处理