磷酸化多肽及其修饰方法

蛋白质磷酸化是生物界最普遍,也是最重要的一种蛋白质翻译后修饰,20世纪50年代以来一直被生物学家看作是一种动态的生物调节过程。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质及多肽的研究可以帮助人们阐述上述过程的机理,进一步认识生命活动的本质。近年来随着蛋白质组技术的不断发展,蛋白质磷酸化的研究越来越受到广泛的关注。蛋白质磷酸化在细胞信号转导中的作用磷酸化多肽主要指肽链中的Ser、Tyr和Thr残基的侧链羟基被修饰成酸式磷酸酯多肽。磷酸化多肽是研究蛋白质磷酸化过程的必不可少的工具,因此研究蛋白质及多肽的磷酸化反应并确定成熟简便的合成路线就变得非常重要。目前为止,多肽的磷酸化修饰主要有后磷酸化法和单体法两种合成方法。后磷酸化法是多肽序列在树脂上合成完后,再对其中的Ser、Tyr或Thr的侧链羟基进行磷酸化;单体......阅读全文

磷酸化多肽及其修饰方法

  蛋白质磷酸化是生物界最普遍,也是最重要的一种蛋白质翻译后修饰,20世纪50年代以来一直被生物学家看作是一种动态的生物调节过程。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质

磷酸化多肽及其修饰方法

蛋白质磷酸化是生物界最普遍,也是最重要的一种蛋白质翻译后修饰,20世纪50年代以来一直被生物学家看作是一种动态的生物调节过程。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质及多

磷酸化多肽及其修饰方法

  蛋白质磷酸化是生物界最普遍,也是最重要的一种蛋白质翻译后修饰,20世纪50年代以来一直被生物学家看作是一种动态的生物调节过程。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质

多肽磷酸化修饰及检测方法

磷酸化影响着细胞生命的方方面面。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质及多肽的研究可以帮助人们阐述上述过程的机理,进一步认识生命活动的本质。肽谷生物依据自身原料优势和技

多肽合成与修饰技术

实验技术:多肽 合成是一个固相合成顺序一般从C端(羧基端)向 N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进 和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成

多肽荧光标记——FITC修饰和AMC修饰

  荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操

多肽荧光标记——FITC修饰和AMC修饰

  荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操

糖肽多肽糖基化修饰

通过化学键将单糖(如葡萄糖、半乳糖)或者多糖连接到多肽上的过程,我们将其称之为多肽糖基化修饰,通过糖基化修饰后得到的多肽,我们称之为糖肽(Glycopeptides);糖肽对膜蛋白功能常常有很重要的影响,对特异的生物学功能起介导作用,比如:对细胞具有保护、稳定、组织及屏障等多方面作用;可作为外源性受

多肽修饰合成常用策略(二)

4、豆蔻酰化和棕榈酰化用脂肪酸酰化N末端可以让多肽或蛋白质与细胞膜结合。N末端上豆蔻酰化的序列可以使Src家族的蛋白激酶和逆转录酶Gaq蛋白靶向结合细胞膜。利用标准的偶联反应即可将豆蔻酸连接到树脂-多肽的N末端,生成的脂肽可在标准条件下解离并通过RP-HPLC纯化。5、糖基化糖肽类如万古霉素和替考拉

多肽修饰合成常用策略(一)

多肽是由多个氨基酸通过肽键连接而形成的一类化合物,普遍存在于生物体内,迄今在生物体内发现的多肽已达数万种。多肽在调节机体各系统、器官、组织和细胞的功能活动以及在生命活动中发挥重要作用,并且常被应用于功能分析、抗体研究、药物研发等领域。随着生物技术与多肽合成技术的日臻成熟,越来越多的多肽药物被开发并应

多肽荧光标记——FITC修饰和AMC修饰(一)

荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操作简

多肽荧光标记——FITC修饰和AMC修饰(二)

(2)在整条肽中的某个Lys侧链接入FITC,Lys侧链为末端为-NH2的四碳直链烷基,直接起到了降低空间位阻的作用。这种修饰方式能够灵活的在整条肽中任何位置进行FITC修饰,而不仅仅局限于末端。我们所采用的FITC修饰多肽的两种形式,都具有操作简便,成功率高,容易分离纯化等优点。2.AMC修饰7-

多肽PEG聚乙二醇修饰

PEG修饰,即聚乙二醇修饰,又称聚环氧乙烷修饰,是将PEG通过化学方法偶联到蛋白质或多肽分子上,从而提升多肽活性的一种方法。自Davies 1977年用PEG 修饰牛血清白蛋白以来, PEG修饰技术广泛应用于多种蛋白质和多肽的化学修饰。 PEG修饰具有延长半衰期、降低或消失免疫原性、减少毒副作用以及

常用多肽修饰方法及过程综述

多肽是一种由两个或多个氨基酸通过肽键(酰胺键)连接而形成的化合物。多肽在调节机体各系统、器官、组织和细胞的功能活动以及在生命活动中发挥重要作用,并且常被应用于功能分析、抗体研究、药物研发等领域。而通过对多肽进行修饰进而改变多肽的理化性质也是多肽研究中一种常用的手段。多肽修饰种类繁多,从修饰位点不同则

RGD环肽,AMC(香豆素)修饰多肽

1. RGD环肽简介在了解RGD肽之前,我们先简单介绍一下整合素,整合素即整联蛋白,是一类介导哺乳动物细胞黏附与信号转导的异二聚体跨膜糖蛋白受体,由α和β亚单位组成,参与包括细胞迁移、细胞侵袭、细胞和细胞间的信号传导、细胞黏附及血管新生过程等多种细胞活动的调节,其中对整合素αvβ3的研究最为广泛。整

sumo化与磷酸化修饰联合分析

随着质谱技术的不断进步,大规模修饰组学的方法也越来越成熟,PTM作为生物体内非常重要的生理现象也逐步被揭示出参与各项生命活动。今天我们就一起来学习一篇运用质谱技术对磷酸化修饰和类泛素化修饰鉴定,找出两种修饰联合作用对在DNA复制损伤压力时的响应。该篇文献来自哥本哈根大学的研究人员于2017年10月发

载体蛋白(KLH,BSA,OVA)偶联多肽修饰简介

肽-载体蛋白偶联多用于制备抗多肽类抗体,单独的多肽通常太小不足以激起充分的免疫反应,而带有很多抗原表位的载体蛋白有利于刺激辅助性T细胞,进一步诱导B细胞免疫反应。请记住,免疫系统是将肽-蛋白作为一个整体来激起免疫反应的,因而产生的抗体中有针对多肽的,有针对链接剂的,也有针对载体蛋白的。 其中最常见的

胰蛋白酶切磷酸化多肽作图实验

胰蛋白酶切蛋白质样品的制备双向薄层电泳与层析分离多肽片段反向高效液相层析绘制多肽图谱实验材料蛋白质                                                          试剂、试剂盒甲醇                                  

胰蛋白酶切磷酸化多肽作图实验

胰蛋白酶切蛋白质样品的制备 双向薄层电泳与层析分离多肽片段 反向高效液相层析绘制多肽图谱             实验材料 蛋白质

胰蛋白酶切磷酸化多肽作图实验

实验材料 蛋白质试剂、试剂盒 甲醇电泳缓冲液仪器、耗材 凝胶电泳实验步骤 1. 用单向或者双向凝胶电泳将 32P 标记的目的蛋白质与其他不需要的成分分开。2. 电泳结束后,用 50% 甲醇清洗三次,时间控制在 6 小时,去处 SDS 和电泳缓冲液将凝胶放在两张塞热玢膜(Bio-Rad) 之间吸干。用

胰蛋白酶切磷酸化多肽—反向高效液相层析绘制多肽图谱

实验材料胰蛋白酶切样品试剂、试剂盒尿素或盐酸胍仪器、耗材离心机实验步骤1. 加样前。做一次模拟加样,进行整个程序的洗脱,测 OD 初始值。记录所有实验变量:加样量、溶剂梯度、流速、吸收范围等。2. 制备 32P 标记的胰蛋白酶切样品(需要几千 cpm 才能有效地检测到 32P 标记的多肽 )。用 0

胰蛋白酶切磷酸化多肽作图_双向薄层电泳/层析分离多肽

实验材料多肽样品试剂、试剂盒电泳缓冲液仪器、耗材平板电泳仪实验步骤1. 将平板电泳仪(型号 FBE-3000, Phannacia) 放在通过循环仪连接到恒温水浴的冷却板上进行电泳。电泳前 30 分钟将水浴温度调至 10℃ 到 15℃ 之间。每个电极槽加 400 ml 缓冲液。切两张 Whatman

荧光标记肽技术常用的多肽修饰荧光物质

荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操作简

胰蛋白酶切磷酸化多肽作图实验—样品制备

实验材料蛋白质试剂、试剂盒甲醇电泳缓冲液仪器、耗材凝胶电泳实验步骤1. 用单向或者双向凝胶电泳将 32P 标记的目的蛋白质与其他不需要的成分分开。2. 电泳结束后,用 50% 甲醇清洗三次,时间控制在 6 小时,去处 SDS 和电泳缓冲液将凝胶放在两张塞热玢膜(Bio-Rad) 之间吸干。用放射性墨

识别特异性酪氨酸磷酸化多肽抗体的制备

实验步骤基 本 方 案 1 多克隆抗磷酸肽抗体的制备材料B S A -琼 脂 糖 亲 和 基 质(Sigma) 填 装(如辅助方案 2 ) 于柱床体积IOml的层析柱磷酸化酪氨酸亲和基质层析柱(IOml 柱床体积;见辅助方案3)磷酸肽-B S A 偶联物免疫家兔的粗制血清PB S /叠氮钠.•含有0

定制多肽、氨基酸和蛋白等表面修饰脂质体

主动靶向药物传递是指利用特定的生物过程如特异性的配体-受体识别和相互作用来提高特定部位的药物浓度。主动靶向系统以抗体、多肽、糖类、维生素、糖蛋白等作为配体与靶细胞受体进行专属性作用。其中多肽分子是机体内一类重要的生物活性物质。具有良好的生物相容性、靶向性、无免疫原性、低毒性等优点将其作为配体应用于靶

关于多肽链的一级结构加工修饰介绍

  ⑴N端甲酰蛋氨酸或蛋氨酸的切除:N端甲酰蛋氨酸是多肽链合成的起始氨基酸,必须在多肽链折迭成一定的空间结构之前被切除。  其过程是:  ① 去甲酰化;  ② 去蛋氨酰基。  ⑵氨基酸的修饰:由专一性的酶催化进行修饰,包括糖基化、羟基化、磷酸化、甲酰化等。  ⑶二硫键的形成:由专一性的氧化酶催化,将

多磷酸化肽标记技术

蛋白质磷酸化是生物界最普遍,也是最重要的一种蛋白质翻译后修饰,20世纪50年代以来一直被生物学家看作是一种动态的生物调节过程。在细胞中,大概有1/3的的蛋白质被认为是通过磷酸化修饰的。蛋白质的磷酸化修饰与多种生物学过程密切相关,如DNA损伤修复、转录调节、信号传导、细胞凋亡的调节等。磷酸化蛋白质及多

方案5-用-μLCESIMS/MS-对磷酸化多肽进行分析

实验材料IMAC 柱子上洗脱下来的多肽试剂、试剂盒乙酸七氯丁酸乙腈仪器、耗材HPLC 系统质谱仪micro-ESI 接口micro-LC 柱实验步骤1.根据制造商的建议,制备、清洗、平衡 uLC 柱。柱子的流速决定于柱子本身,一般 50um (内径)的柱子为 200nl/min 左右,100um (

方案3-固定化金属离子亲和介质对磷酸化多肽进行分析

实验材料牛小肠碱性磷酸酶羧肽酶Y目标磷酸化蛋白TPCK 修饰的膜蛋白酶试剂、试剂盒乙酸EDTAFeCl3NH4HCO3MALDI 基质镍-次氨基三乙酸(Ni-NTA)树脂柠檬酸钠仪器、耗材致密的反应柱子(CRC)过滤器孵育器MALDI 质谱仪MALDI 靶板微量离心管实验步骤一、固定化金属离子亲和柱