射频功率放大器(RFPA)概述(三)

半导体材料的变迁:Ge(锗)、Si(硅)→→→GaAs(砷化镓)、InP(磷化铟)→→→SiC(碳化硅)、GaN(氮化镓)、SiGe(锗化硅)、SOI(绝缘层上覆硅) →→→碳纳米管(CNT) →→→石墨烯(Graphene)。目前功率放大器的主流工艺依然是GaAs工艺。另外,GaAs HBT,砷化镓异质结双极晶体管。其中HBT(heterojunction bipolar transistor,异质结双极晶体管)是一种由砷化镓(GaAs)层和铝镓砷(AlGaAs)层构成的双极晶体管。CMOS工艺虽然已经比较成熟,但Si CMOS功率放大器的应用并不广泛。成本方面,CMOS工艺的硅晶圆虽然比较便宜,但CMOS功放版图面积比较大,再加上CMOS PA复杂的设计所投入的研发成本较高,使得CMOS功放整体的成本优势并不那么明显。性能方面,CMOS功率放大器在线性度,输出功率,效率等方面的性能较差,再加上CMOS工艺固有......阅读全文

射频功率放大器(RF-PA)概述(三)

半导体材料的变迁:Ge(锗)、Si(硅)→→→GaAs(砷化镓)、InP(磷化铟)→→→SiC(碳化硅)、GaN(氮化镓)、SiGe(锗化硅)、SOI(绝缘层上覆硅) →→→碳纳米管(CNT) →→→石墨烯(Graphene)。目前功率放大器的主流工艺依然是GaAs工艺。另外,GaAs HBT,

射频功率放大器(RF-PA)概述(二)

1、晶体管晶体管有很多种,包括当前还有多种结构的晶体管被发明出来。本质上,晶体管的工作都是表现为一个受控的电流源或电压源,其工作机制是将不含内容的直流的能量转化为“有用的”输出。直流能量乃是从外界获得,晶体管加以消耗,并转化成有用的成分。不同的晶体管不同的“能力”,比如其承受功率的能力有区别,这也是

射频功率放大器(RF-PA)概述(一)

基本概念射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大

RF射频原理是什么

射频(RF)是一种高频的电磁波,由每秒钟电场的正负极变化高达数百万次交变电场产生,能够直接穿透皮肤的表皮层抵达真皮组织,将胶原纤维加热至55℃-65℃,使胶原纤维收缩而变粗,持续地增加胶原蛋白的增殖和分泌,补充随着年龄日渐流失的弹性胶原蛋白,抚平皱纹。

六级射频和rf射频的区别

六级射频与RF射频的区别在于所使用的射频技术、热作用深度和治疗中的舒适度区别。1、RF射频射频波长、作用深、维持时间长。但功率较大,一般需要专业医生操作,确保对能量的控制。2、六级射频能量更高效,且作用范围更均匀、更深入,释放更均匀,本质上属于网状射频,增生胶原的效果更显著。

射频功率放大器简介

  射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。  射频功率放

射频功率放大器的介绍

射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。

什么是射频放大器

射频功率放大器(RF PA):各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。

射频功率放大器的分类

射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器

射频PA在通信领域的作用及重要性-(三)

不同材料工艺的 PA 产业分工略有不同 普通硅工艺集成电路和砷化镓 / 氮化镓等化合物集成电路芯片生产流程大致类似,但与硅工艺不同的是化合物半导体制程由于外延过程复杂,所以形成了单独的磊晶产业。    磊晶是指一种用于半导体器件制造过程中,在原有芯片上长出新结晶以制成新半导体层的技

射频功率放大器基本概念、分类及电路组成-(一)

基本概念   射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功

射频功率放大器基本概念、分类及电路组成-(二)

1-3、输入输出匹配电路   匹配电路的目的是在选择一种接受的方式。对于那些想提供更大增益的晶体管来说,其途径是全盘的接受和输出。这意味着通过匹配电路这一个接口,不同的晶体管之间沟通更加顺畅,对于不同种的放大器类型来说,匹配电路并不是只有“全盘接受”一种设计方法。一些直流小、根基浅的小

5G-时代,射频前端腾飞在即

在过去几年中,通信厂商和硬件制造商都在积极布局5G产品,例如针对毫米波、MIMO、载波聚合等一系列软硬件应用的开发。   当前最新的5G硬件都是在配合相关标准,例如3GPPR16。虽然5G的规范和更新还在进行中,但是可以通过软件更新的方式来满足要求。   目前已经推出的5G模组

华为5G芯片率先完成SA/NSA全部测试的背后面临哪些挑战3

因此对前端模块(PA和LNA)、双工器、混频器和滤波器等RF通信组件进行特性分析将面临着一系列新的测量挑战。为在较大带宽下实现更高的能效和线性度,5G PA引入了数字预失真(DPD) 等线性化技术。由于电路模型难以预测记忆效应,因此降低记忆效应唯一有效方法是测试PA并在时域信号通过D

一文读懂28GHz-5G通信频段射频前端模块-(一)

随着 5G 毫米波预期即将进入商用,行业内关键公司的研发正在顺利推进,已经完成定制组件指标划定、设计和验证。实现未来毫米波 5G 系统所需的基本组件是射频前端模块(FEM)。该模块包括发射机的最终放大级以及接收机中最前端的放大级以及发射 / 接收开关(Tx/Rx)以支持时分双工(T

几种常见的射频电路类型及主要指标

1 低噪声放大器(LNA)LNA是一种特殊的放大器,主要用于射频接收机前端,将天线接收的信号以小的噪声和大的增益进行放大,对提高接收信号质量,降低噪声干扰,提高接收灵敏度有着极其重要的意义,它的性能好坏关系到整个通信系统的质量。低噪声放大器的主要指标有:噪声系数(NF)、增益(Gain)、输

射频导纳物位计概述

  射频导纳物位计产品的结构分为主电极和补偿电极两部分。在主电极与补偿电极间分别施加一组RF射频信号,因而具有很好的抗粘料、挂料特性,是取代电容料位开关的新型物/液位测量产品。  由于保护电极的存在,检测电路将检测电极和保护电极的信号进行比较,从而实现克服物料粘附对物位测量的影响。

射频PA在通信领域的作用及重要性-(二)

PA 也是射频前端器件中价值量较大的器件 手机目前仍然是射频前端最大的终端应用市场,在所有射频前端器件中,射频 PA 的价值量仅次于滤波器,是射频前端器件中价值量较大的器件。根据 Yole 的数据显示,2017 年手机射频前端中射频 PA 市场规模约 50 亿美元,在整个射频前端中

射频PA在通信领域的作用及重要性-(一)

电磁波传输距离和发射功率成正比,射频 PA 性能直接决定通讯距离、信号质量和待机时间(或耗电量),根据 Yole 数据显示,2017 年手机射频前端中射频 PA 市场规模约 50 亿美元,在整个射频前端中价值量占比 35%,仅次于滤波器,也是射频前端价值量最高的单类型芯片。  

射频PA在通信领域的作用及重要性-(五)

基站射频市场未来几年有望翻番 由于基站建设呈现一定的周期性,因此基站射频市场也相应的呈现一定的周期性。根据赛迪顾问的数据显示,中国基站射频市场规模有望从 2020 年的不到 50 亿元增长到 2023 年的超过 110 亿元,整体市场份额增长超过一倍,之后每年的市场份额将逐年下降。 

射频PA在通信领域的作用及重要性-(四)

5G 具有更大的带宽 4G 走向 5G 时另一个重大的变化是手机必须支持更大的带宽,提高带宽是实现以全新 5G 频段为目标的更高数据速率的关键。LTE 频段不高于 3GHz,单载波带宽仅为 20MHz,到了 5G 时代,FR1 的信道 / 单载波带宽高达 100MHz,FR2 的单

降低CDMA/WCDMA蜂窝电话的射频功耗

为了满足IS95/3GPP扩频标准中规定的严格的线性和邻信道功率抑制比(ACPR)指标,CDMA/WCDMA无线手机需要采用高线性度的A类或AB类RF功率放大器。在最大输出功率Po = 28dBm下,这类PA的功效(PAE)只有35%,输出功率较低时功效更低。语音模式下,PA并非工作在连续模式。

射频导纳液位计的概述

  导纳料位仪工作原理  射频导纳料位仪由传感器和控制仪表组成,如图所示。传感器可采用棒式、同轴或缆式探极安装于仓顶。  传感器中的脉冲卡可以把物位变化转换为脉冲信号送给控制仪表,控制仪表经运算处理后转换为工程量显示出来,从而实现了物位的连续测量。由于采用了射频导纳检测技术,提高了可靠性并使安装调试

RF无线射频电路设计中的常见问题及设计原则(二)

  3.2.2电气分区原则  功率传输原则。蜂窝电话中大多数电路的直流电流都相当小,因此,布线宽度通常不是问题。不过.必须为高功率放大器的电源单独设定一条尽可能宽的大电流线,以将传输压降减到最低。为了避免太多电流损耗,需要采用多个通孔来将电流从某一层传递到另一层。  高功率器件的电源去耦。如

关于射频导纳液位计的概述

  射频导纳料位仪由传感器和控制仪表组成,传感器可采用棒式、同轴或缆式探极安装于仓顶。  传感器中的脉冲卡可以把物位变化转换为脉冲信号送给控制仪表,控制仪表经运算处理后转换为工程量显示出来,从而实现了物位的连续测量。由于采用了射频导纳检测技术,提高了可靠性并使安装调试变得非常简便。

5G毫米波无线电射频技术概述

业界普遍认为,混合波束赋形(例如图 1 所示)将是工作在微波和毫米波频率的 5G 系统的首选架构。这种架构综合运用数字(MIMO) 和模拟波束赋形来克服高路径损耗并提高频谱效率。如图 1 所示,m 个数据流的组合分割到 n 条 RF 路径上以形成自由空间中的波束,故天线元件总数为乘

通用RF器件的载波功率电平、OIP3-指标和单载波/多载波ACL...

通用RF器件的载波功率电平、OIP3 指标和单载波/多载波ACLR之间的关系 ACLR/IMD 模型   为了了解 RF 器件的 ACLR 来源可以对宽带载波频谱进行模拟,相当于独立的 CW 副载波集合。每个副载波都会携带一部分总的载波功率。下图所示就是这样一个模型,连续 RF

射频混频器设计Harmonic-balance-simulation-speeds-RF-mixer-design2

Figure 3. Performance of a somewhat idealized Marchand balun with Z0o = 25 ohms, Z0e = 180 ohms, and ZL = 60 ohmsThe output terminals are each treat

射频混频器设计Harmonic-balance-simulation-speeds-RF-mixer-design1

Harmonic balance simulation speeds RF mixer designHarmonic balance simulation speeds RF mixer designStephen Maas, Chief Technical Officer,  Applied Wa

5G-RF前端对先进封装技术的依赖超乎想象​

在智能手机电子设计领域,5G RF前端(RFFE)复杂功能的出现对系统设计提出了一系列新挑战。在智能手机的有限空间内,对多个5G频率、TDD和FDD的需求,甚至多个毫米波天线模块的需求,都促使业界寻求解决方案,以解决这种复杂性问题。   5G设计中应用的主要技术不仅专注在最基础的硅芯片