III型ACRISPRCas系统改造耐药金黄色葡萄球菌的基因组

CRISPR-Cas系统是古细菌及其他细菌的获得性免疫系统,是细菌为了抵御外源基因入侵而形成的自我保护机制。根据CRISPR相关蛋白(CRISPR-associated proteins ,cas)的结构和功能,将为CRISPR-Cas系统分为5个类型,其中I 型、 II型和III型CRISPR-Cas系统最近研究较多。已有研究表明III型CRISPR-Cas系统由9个cas蛋白(包括cas和csm)和间隔序列(spacer)组成,其中Cas10是参与crRNA的成熟和剪切入侵外源DNA的特征蛋白。孙宝林课题组在之前研究发现6株临床分离株(S. aureus AH1, AH2, AH3, SH1, SH2, 和SH3)含有III型-A CRISPR-Cas系统,且对系统中重复序列研究发现它们具有较高保守性。此外,与I 型和 II型 CRISPR-Cas 系统较大不同, III型CRISPR-Cas系统不需要PAM(proto......阅读全文

III型A-CRISPRCas系统改造耐药金黄色葡萄球菌的基因组

  CRISPR-Cas系统是古细菌及其他细菌的获得性免疫系统,是细菌为了抵御外源基因入侵而形成的自我保护机制。根据CRISPR相关蛋白(CRISPR-associated proteins ,cas)的结构和功能,将为CRISPR-Cas系统分为5个类型,其中I 型、 II型和III型CRISPR

中国科大CRISPRCas系统调控细菌基因组重塑研究获进展

  CRISPR-Cas(成簇的规律间隔的短回文重复序列及其相关蛋白质)系统是原核生物特有的一类适应性免疫系统,可以保护宿主不受外源核酸的入侵。目前关于CRISPR-Cas系统的研究主要集中在防御机制、被开发为基因编辑工具运用于原核和真核生物的基因组编辑等方面,而关于CRISPR-Cas系统对于宿主

中国科大研究组在CRISPRCas系统调控细菌基因组重塑...

  近日,中国科学技术大学生命学院及医学中心孙宝林研究组在CRISPR-Cas系统领域研究取得进展,在美国微生物学会知名期刊mSphere上发表题为《Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genom

华中农大:利用I型及III型CRISPRCas系统实现基因组编辑

  CRISPR-Cas系统广泛存在于细菌和古细菌中,近年来科学家们针对它们的分子机制开展研究促使开发出了基于II型系统的一些基因编辑技术(延伸阅读:中科院Cell发表CRISPR-Cas研究新成果 )。然而,却未有研究报道利用I型及III型系统来实现基因组编辑。  来自华中农业大学的研究人员报告称

生物物理所揭示III型CRISPRCas系统免疫机制

  11月29日,《细胞》(Cell)杂志在线发表了中国科学院生物物理研究所王艳丽课题组和章新政课题组合作的研究论文“Structure Studies of the CRISPR-Csm Complex Reveal Mechanism of Co-transcriptional Interfer

中国科学家揭示III型CRISPRCas系统免疫机制

  11月29日,《细胞》杂志在线发表了中国科学院生物物理研究所王艳丽课题组和章新政课题组合作的研究成果。研究人员系统地阐述了III型CRISPR-Cas系统抵御外源核酸的分子机制。  CRISPR-Cas系统是一种由RNA介导的获得性免疫系统,在原核生物中广泛存在。在此之前,科学家们已经系统研究过

Cell:首次发现针对III型CRISPRCas系统的蛋白抑制剂

  如果说CRISPR复合物听起来很熟悉,那是因为它们是新一波基因组编辑技术的最前沿。CRISPR/Cas系统是目前发现存在于大多数细菌与所有的古菌中的一种免疫系统,被用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。  在CRISPR/Cas系统中,CRISPR是规律间隔性成簇短回文重复序列(cl

金黄色葡萄球菌耐药性研究获进展

 中科院上海药物研究所蓝乐夫课题组、蒋华良课题组与芝加哥大学何川教授课题组等合作,在金黄色葡萄球菌致病性及耐药性的调节机制研究方面获得新进展。研究论文于8月27日在线发表于美国《国家科学院院刊》(PNAS)。金黄色葡萄球菌是一种重要的院内感染细菌。抗生素的使用以及滥用催生并富集了耐药性菌株,耐甲氧西

生物物理所在IIIE型CRISPRCas系统研究方面取得进展

  CRISPR-Cas系统广泛存在于细菌、古菌和某些细菌的病毒中(bacteriophage),可以特异性识别并降解外源入侵的基因。根据CRISPR-Cas系统干扰机制的不同,这些系统被分为两类,即Class1和Class2。Class1由多个蛋白构成效应复合物(包括I、III和IV型),Clas

耐甲氧西林金黄色葡萄球菌的耐药机理

  固有耐药  是由染色体介导的耐药,其耐药性的产生与细菌产生一种青霉素结合蛋白(PBP)有关。产生五种PBP(1,2,3,3′和4),它们具有合成细菌细胞壁的功能。它们与β-内酰胺类抗生素有很高的亲和力,能共价结合于β-内酰胺类药物的活动位点上,失去其活性导致细菌死亡,而MRSA产生了一种独特的P

阻断耐药性金黄色葡萄球菌感染的新策略

  金黄色葡萄球菌是一种常见的在人体鼻腔中繁殖的细菌,携带该菌的个体往往容易引发金黄色葡萄球菌的感染;近日,来自国家血清研究所(Statens Serum Institut)等处的研究人员通过研究表明,我们或许可以利用一些良性的细菌来将金黄色葡萄球菌“赶出”体外;研究者指出,在确定细菌的繁殖能力上,

触酶阴性金黄色葡萄球菌的鉴定与耐药分析

  作者:马俊敏 邱淑清    作者单位:137400内蒙古兴安盟结核病防治所   材料和方法     标本来源:患者,女,5岁,2006年6月12日因脑出血入院,6月16日手术,术后肺部感染高热。血象:WBC 18.40×109/L,N 0.916,L0.041,M0.018。6月18日送痰标本做

耐甲氧西林金黄色葡萄球菌耐药机制及其检测

1 什么是MRSA  金黄色葡萄球菌是临床上常见的毒性较强的细菌,自从本世纪40年代青霉素问世后,金黄色葡萄球菌引起的感染性疾病受到较大的控制,但随着青霉素的广泛使用,有些金黄色葡萄球菌产生青霉素酶,能水解β-内酰胺环,表现为对青霉素的耐药。因而人们又研究出一种新的能耐青霉素酶的半合成青霉素,即甲氧

不杀菌就能抵抗”超级细菌“感染-解决细菌耐药性的新思路

  金黄色葡萄球菌(Staphylococcus aureus)被认为是全球最大的健康威胁之一。纽约大学医学院和杨森研发(Janssen Research & Development)的科学家历时5年合作开发出一组新的工程蛋白,有助于有效抵抗严重的金黄色葡萄球菌感染。该成果近日在线发表于《Scien

临床多重耐药菌基因组编辑研究取得进展

  直接在临床分离的多重耐药菌中进行功能基因组学研究是解析耐药机制以及开发抗耐药策略最直接有效的方法。然而,由于缺乏能在临床耐药菌中直接进行高效基因编辑的工具,目前耐药机制仍主要是采用组学分析加在模式菌中的异源验证进行研究。这种脱离了临床耐药菌本身遗传背景的研究策略,往往忽略了遗传背景本身对耐药因子

耐甲氧西林金黄色葡萄球菌(MRSA)耐药机制及其检测

1 什么是MRSA  金黄色葡萄球菌是临床上常见的毒性较强的细菌,自从本世纪40年代青霉素问世后,金黄色葡萄球菌引起的感染性疾病受到较大的控制,但随着青霉素的广泛使用,有些金黄色葡萄球菌产生青霉素酶,能水解β-内酰胺环,表现为对青霉素的耐药。因而人们又研究出一种新的能耐青霉素酶的半合成青霉素,即甲氧

Nature:-CRISPR/Cas系统,如何区分敌友

  不忙于攻击我们时,细菌之间会彼此竞争。但当病毒入侵细菌时,它们不总是给受感染的微生物带来灾难:有时候病毒实际上携带着细菌可以利用的有益基因,可以扩大其饮食或是让它们能够更好地攻击自身的宿主。  科学家们一直认为,细菌的免疫系统会自动地破坏它识别为入侵病毒基因的东西。现在,来自洛克菲勒大学的研究人

金黄色葡萄球菌

Bad Bug Book: Foodborne Pathogenic Microorganisms and Natural Toxins Handbook Staphylococcus aureus1. 微生物名称金黄色葡萄球菌金黄色葡萄球菌是一种球形细菌(球菌),显微镜下成对、短链或成串、葡萄状群

临床多重耐药菌基因组编辑研究取得进展

  直接在临床分离的多重耐药菌中进行功能基因组学研究是解析耐药机制以及开发抗耐药策略最直接有效的方法。然而,由于缺乏能在临床耐药菌中直接进行高效基因编辑的工具,目前耐药机制仍主要是采用组学分析加在模式菌中的异源验证进行研究。这种脱离了临床耐药菌本身遗传背景的研究策略,往往忽略了遗传背景本身对耐药因子

Cell-Reports:基于内源性IF型CRISPR的高效便捷基因编辑系统

  直接在临床分离的多重耐药菌中进行功能基因组学研究是解析耐药机制以及开发抗耐药策略最直接有效的方法。然而,由于缺乏能在临床耐药菌中直接进行高效基因编辑的工具,目前耐药机制仍主要是采用组学分析加在模式菌中的异源验证进行研究。这种脱离了临床耐药菌本身遗传背景的研究策略,往往忽略了遗传背景本身对耐药因子

金黄色葡萄球菌儿童株耐药性研究和mecA基因检测

为了了解金黄色葡萄球菌(简称金葡菌)儿童株对常用抗生素的耐药特点,评价苯唑西林耐药性相关基因mecA-PCR的临床价值。研究者用金葡菌乳胶凝集试验和Vitek系统GPI卡鉴定金葡菌,用纸片扩散法完成12种常用抗生素的药敏试验,同时用E-test法进行苯唑西林和万古霉素耐药性检测,并对所有菌株采用PC

医院感染耐甲氧西林金黄色葡萄球菌的耐药性分析

青海红十字医院检验科    高兴娟 (13709744972)   810000【摘要】 目的 为了解我院医院感染耐甲氧西林金黄色葡萄球菌(MRSA)的耐药情况。方法 对2012年7月至2013年6月的住院病人各种临床标本中分离出的金黄色葡萄球菌(sau)进行WHONET耐药检测分析(测MIC),用

耐甲氧西林金黄色葡萄球菌的分型介绍

  MRSA分型对追踪传染源、研究型别与感染种类和耐药性的关系有重要意义。国外开展较早的有噬菌体分型:将待测菌于肉汤中,35°C孵育6 h,涂布于分型琼脂平板上,待干后将23种噬菌体注入琼脂平板中的小方格内,再置35°C培养箱孵育,6 h后移至室温过夜观察结果。用4组23种噬菌体,将MRSA分为4群

金黄色葡萄球菌的检验

  1主要试剂和试验方法:  1.1革兰氏染色:  1.1.1涂片、火焰固定。  1.1.2草酸铵结晶紫染1min。  草酸铵结晶紫染液的配制:  溶液A:结晶紫2g,95%酒精20mL,溶液B:草酸铵0.8g,蒸馏水80mL。将A、B溶液混合,用滤纸过滤后即可使用。  1.1.3自来水冲洗。  1

金黄色葡萄球菌的检验

 1主要试剂和试验方法:  1.1革兰氏染色:  1.1.1涂片、火焰固定。  1.1.2草酸铵结晶紫染1min。  草酸铵结晶紫染液的配制:  溶液A:结晶紫2g,95%酒精20mL,溶液B:草酸铵0.8g,蒸馏水80mL。将A、B溶液混合,用滤纸过滤后即可使用。  1.1.3自来水冲洗。  1.

研究称:利奈唑胺治疗甲氧西林耐药金黄色葡萄球菌

  近日在温哥华举行的美国传染病学会第48届年会上发表的一项全球性针对确诊甲氧西林耐药金黄色葡萄球菌 (MRSA)肺炎的最新IV期研究证实:在主要评价终点时,斯沃(利奈唑胺)临床治疗成功率高于万古霉素,具有统计学意义。ZEPHyR (利奈唑胺治疗MRSA所致院内肺炎)研究是迄今为止在此类人群

将CRISPRCas系统用于抗菌“基因疗法”

  CRISPR于1987年出现于日本,当时的研究人员报告称,他们在大肠杆菌基因组中发现了一种不寻常的结构,其中包含一系列重复片段,中间以独特的间隔序列隔开。后来的研究表明,间隔序列对应了感染细菌细胞的噬菌体的序列。在一些原核生物和古生物中,CRISPR和CRISPR相关蛋白(Cas)作为一种适应性

利用I型CRISPRCas系统实现大片段基因敲除

  CRISPR-Cas系统是细菌和古细菌中广泛存在的一种由RNA介导抵抗外援病毒或者核酸入侵的“获得性免疫系统”。CRISPR-Cas系统主要分为两大类:I类(Class I)利用多亚基效应复合物来实现对靶标序列的识别和切割过程;而II类(Class 2)则由单一蛋白来执行相关功能,作用机制相对简

金黄色葡萄球菌的感染处理

  由于MRSA(耐甲氧西林金黄色葡萄球菌) 的存在,一般不使用青霉素医学教育|网。所以有金黄色葡萄球菌感染者,可选用:红霉素、新型青霉素、庆大霉素、万古霉素或先锋霉素Ⅵ治疗。  治疗事项  1、毛囊炎治疗要注意饮食,不要吃辛辣刺激性食物,不能喝酒。  2、不可用手搔抓患处,以防继发感染。  3、待

预防金黄色葡萄球菌的感染

  第一,防止金黄色葡萄球菌污染食品  防止带菌人群对各种食物的污染:定期对生产加工人员进行健康检查,患局部化脓性感染(如疥疮、手指化脓等)、上呼吸道感染(如鼻窦炎、化脓性肺炎、口腔疾病等)的人员要暂时停止其工作或调换岗位。对肉制品加工厂,患局部化脓感染的禽、畜尸体应除去病变部位,经高温或其他适当方