Antpedia LOGO WIKI资讯

科学家利用亚微米红外首次直观揭示神经元中淀粉样蛋...

科学家利用亚微米红外首次直观揭示神经元中淀粉样蛋白聚集机理老年神经退行性疾病,如阿尔茨海默症(AD)、肌萎缩性侧索硬化症、Ⅱ型糖尿病等,目前困扰着全世界大约5亿人,且这个数字仍在不断迅速增长。尤其是阿尔兹海默症(占70%以上),目前仍未有行之有效的诊断方法,因此无法得到有效的治疗或预防。尽管当代病理学研究已经证实这种病理变化与具有神经毒性的β淀粉样蛋白质的聚集有关,但其在神经元或脑组织中的聚集机制目前尚不清楚。现有的方法, 如电子显微镜、免疫电子显微镜、共聚焦荧光显微镜、超分辨显微镜,通常都需要对样品进行化学加工(标记染色等),可能会对淀粉样蛋白结构本身造成影响。而非标记方法,如表面增强拉曼光谱(SERS)和傅里叶变换红外光谱(FTIR), 前者受限于亚细胞水平上的低信噪比、自发荧光及不可逆的光损伤,后者其空间分辨率受限于红外光波长(≈5–10 μm),且光谱可解译性和准确性受到弹性细胞光散射所产生的米氏散射效应......阅读全文

科学家利用亚微米红外首次直观揭示神经元中淀粉样蛋...

科学家利用亚微米红外首次直观揭示神经元中淀粉样蛋白聚集机理老年神经退行性疾病,如阿尔茨海默症(AD)、肌萎缩性侧索硬化症、Ⅱ型糖尿病等,目前困扰着全世界大约5亿人,且这个数字仍在不断迅速增长。尤其是阿尔兹海默症(占70%以上),目前仍未有行之有效的诊断方法,因此无法得到有效的治疗或预防。尽管当代病理

科学家揭示神经元如何影响决策过程

  据物理学家组织网1月16日(北京时间)报道,德国图宾根大学和马克思·普朗克生物控制学研究所等多家单位开展合作研究,揭示了在决策过程中,单个神经元在保持与其他神经元互相关联的条件下是怎样重建权重的。相关论文发表在最近出版的《自然·神经科学》杂志上。   无论在社会生活中还是在自然界,制定决策通常

Cell:科学家首次鉴别出“注意力”神经元

  最近,来自瑞典卡若琳斯卡学院的研究人员通过研究首次在小鼠大脑中鉴别出了对注意力非常关键的特殊细胞类型,而通过对这种细胞类型的活性进行操控就可以增强小鼠的注意力,相关研究刊登于国际杂志Cell杂志上,该研究为理解大脑的额叶结构的功能及其控制行为的机制提供了新的思路。  大脑的额皮质结构在认知功能上

科学家首次发现AD患者特定神经元死亡的真相

  阿尔茨海默病(AD) 是一种进行性发展且不可逆的神经退行性疾病。伴随着神经元的退化和死亡,AD患者的记忆和认知能力逐渐下降。然而,并非所有神经元都受到同等影响,即使在同一类神经元中,有些细胞会更容易死亡,有些则安然无恙。有关特定神经元类型内的选择性退化和死亡具体分子机制也一直困扰着科学家。  近

俄科学家利用光遗传学修复盲眼神经元

  视觉是通过位于眼睛视网膜上的特殊神经元对光线做出反应并向大脑发出信号而产生的。当神经元停止正常工作时,眼睛就会失明。俄新社近日发布消息称,俄罗斯科学家在实验室开发出一种能恢复视力的药物,可让因视网膜丧失光敏感性而致盲的患者重见光明。   早在1999年,英国生物学家、物理学家及神经科学家(196

科学家在芯片上搭建神经元电路

  研究人脑神经网络的通讯和协调运作,是现代神经科学领域最大的挑战之一。据美国物理学家组织网7月13日(北京时间)报道,最近,以色列特拉维夫大学电力工程学院开发出一种新型芯片实验室平台,利用先进材料和组织工程技术将神经元和电子学结合起来,研究脑神经网络的工作原理。研究论文发表在最新一期

科学家揭示人类胚胎大脑中间神经元发育规律

  自闭症、焦虑症、抑郁症......等心理疾病发生时,大脑发生了怎样的改变?  越来越多的科学证据表明,上述疾病并不只是心理疾病,还是大脑中的神经元出现了“问题”,正是大脑神经元不停地“传输信号”,才使得我们有了兴奋、低沉等情绪。  但这些神经元是如何生成发育、又是如何规律运行?所谓“心理疾病”的

新型植入装置助科学家无线操控神经元

  摁一下按钮,就可以遥控小鼠的行走路线,神奇吧!这其实是一种超薄的微创植入装置在起作用,通过它就可以用药物和光来控制脑细胞。  美国华盛顿大学医学院、圣路易斯大学和伊利诺伊大学厄本那—香槟分校的研究团队近日在《细胞》杂志网络版上详细介绍了这个革命性的远程控制植入设备,它能让神经科学家将药物注入小鼠

Nature:科学家阐释运动神经元新角色

  刊登在国际杂志Nature上的一项研究报告中,来自瑞典卡罗琳学院 (Karolinska Institutet)的科学家揭示了运动神经元的新角色,运动神经元可以脊髓延伸到肌肉和其他器官中,而且其一直被认为被动接收来自神经元回路内部的信号,本文中研究人员就发现了一种通过运动神经元的新型直接的信号通

科学家发现:海马体中新神经元的来源

  曾经有人认为,哺乳动物出生时会有一生所有的神经元供应。 然而,在过去的几十年中,神经科学家已经发现,大脑至少有两个区域——嗅觉中心和海马体——在整个生命中能生长出新的神经元。近期发表在Cell上的一篇研究不仅证实了这一观点,而且对大脑海马体中新神经元的来源进行了探究。(DOI:https://d