Antpedia LOGO WIKI资讯

Science:脑瘤复发之谜

多形性胶质母细胞瘤GBM是一类最具侵袭性的原发性脑瘤,科学家们一直认为GBM始于胶质细胞。而近期Science杂志上的一篇文章中,Salk生物研究学院的研究人员发现,包括皮质神经元在内的神经系统其他已分化细胞也能形成GBM。 GBM最具破坏性的脑瘤之一,尽管人们在遗传学分析和分类上取得了一些进展,但这种疾病的预后始终很差,大多数患者都会在确诊后一至两年内死亡。Salk的研究人员揭示了GBM复发的原因,并提出了治疗这一致命脑瘤的新靶点。 “GBM治疗进展缓慢的原因之一,就是人们对其起始和发展的机制认识不足,”Salk遗传学实验室的Inder Verma教授说。 肿瘤抑制基因负责调控细胞生长并抑制肿瘤发展,Verma利用改良的慢病毒使这些基因失效,以便让癌细胞得以大肆生长。 研究人员建立了基因工程小鼠模型,使其神经元、星形胶质细胞或神经干细胞可以特异性表达CRE酶。他们将短发夹RNA连接在慢病毒载体上,并将其直接注入小鼠大脑......阅读全文

Nature子刊:一种测量能量代谢调节环路的新标记——Brs3

  来自美国NIH美国国家糖尿病、消化及肾脏疾病研究所(NIDDK)的研究人员发表了题为“Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and hea

光遗传学手段揭秘帕金森病新机制

  帕金森病 (Parkinson’s disease, PD) 是一种老年人常见的神经退行性疾病。它主要影响患者的运动神经系统,导致PD患者出现颤抖、肢体僵硬、步态异常和运动功能减退等症状。目前还没有一种疗法可以治愈PD,不管是药物治疗还是脑深层电刺激 (deep brain stimulus,

罗敏敏/龚辉合作组开发神经元稀疏标记方法

  脑连接图谱研究是神经生物学主要的研究课题之一。以往研究主要注重于描绘大脑中的不同脑区之间以及不同位置神经元类群之间的连接。虽然这些脑连接图谱揭示了神经系统的基本结构,但由于缺乏单细胞精度,脑区水平或神经元类群水平的连接图谱并不能准确反映神经系统的精细结构。目前,有两个因素限制了单神经元连接谱的研

NISB发表:神经元稀疏标记方法实现全脑范围单细胞重构

  脑连接图谱研究是神经生物学主要的研究课题之一。以往研究主要注重于描绘大脑中的不同脑区之间以及不同位置神经元类群之间的连接。虽然这些脑连接图谱揭示了神经系统的基本结构,但由于缺乏单细胞精度,脑区水平或神经元类群水平的连接图谱并不能准确反映神经系统的精细结构。目前,有两个因素限制了单神经元连接谱的研

Cell:研究人员用单细胞精确控制老鼠大脑的行为

  哥伦比亚大学的一个神经科学家小组首次通过激活老鼠视觉皮层中的几个神经元来控制老鼠的视觉行为。  在发表在《Cell》杂志上的研究中,研究人员证明了所谓的神经元群在行为中具有因果关系。研究人员使用了新的光学和分析工具,在小鼠执行视觉任务时识别其皮层集合。他们还使用高分辨率光遗传学以单细胞精度同时靶

Nature子刊颠覆原有理论:补上大脑如何调控食欲关键拼图

  贝斯以色列女执事医疗中心(BIDMC)的研究人员发现了一种前所未知的神经环路,这种神经环路在促进饱腹感方面发挥了重要作用。研究人员指出这一发现颠覆了目前关于大脑维持机体现有摄食行为状态的模型,为了解饥饿和饱腹调控提供了新的信息,也有助于研发针对肥胖流行病的解决办法。  这一研究成果在线公布在11

Cell:鉴定出调节食物摄入的味觉回路

  包括人类在内的所有动物喜欢甜食,特别是在饥饿时。但是如果你在正常情形下从不抗拒甜点的话,那么作为一项科学实验,试着狼吞虎咽6个甜甜圈。吃完后,即便是一块最可口的巧克力蛋糕也将并不那么勾起你的食欲,而且你也很可能吃得更少。  大脑加工很多有助调节我们吃什么和吃多少的信号。我们如何知道哪些口味好而哪

Nature 表观遗传学进展将遗传学、环境与疾病联系了起来!

  21世纪,表观遗传学的研究得到了快速发展,同时其产生了让研究人员感兴趣和憧憬的东西,当然了,这其中也存在一些大肆宣传的成分,本文中,我们回顾了表观遗传学在过去几十年里是如何演变的,同时分析了近年来改变科学家们对生物学理解的一些研究进展;我们讨论了表观遗传学和DNA序列改变之间的相互作用,以及表观

Cell:精确到单细胞!瞄准两个神经元便能控制视觉行为

  多年以来,人们试图通过对大脑不同区域进行电击来改善或治疗帕金森等运动障碍或抑郁症等神经障碍疾病。成千上万的神经疾病患者因此得以缓解病情。然而,这项治疗会牵扯到脑部大量未知的神经元。如果能够精确控制某几个控制疾病的神经元或将打开治疗神经性疾病的大门。  近日,哥伦比亚大学的神经科学家首次通过激活老

光遗传学之父Cell发表突破成果

  最近,斯坦福大学的科学家们结合两种尖端技术,发现前额叶皮层中的神经元被用来响应奖励或厌恶经历,这可能对治疗精神疾病和成瘾具有重要的意义。  前额叶皮层在哺乳动物的大脑中扮演了一个神秘但却主要的作用。它与情绪调节相关,前额叶皮层中的不同细胞似乎能响应正面和负面的体验。然而,前额叶皮层是如何支配奖励

华人女教授Nature:梦的神经开关

  最近,加州大学伯克利分校的神经学家,能够使一只沉睡的小鼠快速进入梦境。研究人员在位于大脑髓质(大脑的一个古老部分)的一组神经细胞中,插入一个光遗传学开关,从而能够用激光来激活或抑制这组神经元。  这些神经元被激活时,睡眠的小鼠在几秒钟内就进入了快速眼动睡眠(REM)。快速眼动睡眠的特征是快速眼球

美BRAIN计划发布首个技术成果:无创技术启动和关闭神经元

  研究人员开发了一种新化学遗传学(chemogenetic)技术,可以通过启动和关闭神经元,揭示控制小鼠行为的大脑回路。这是美国NIH BRAIN计划产出的首个技术成果,可以帮助人们调节神经元进而治疗疾病。  北卡罗来纳大学和NIH的研究团队在四月三十日的Neuron杂志上发表文章介绍了这一成果。

美国BRAIN计划发布首个技术成果

  研究人员开发了一种新化学遗传学(chemogenetic)技术,可以通过启动和关闭神经元,揭示控制小鼠行为的大脑回路。这是美国NIH BRAIN计划产出的首个技术成果,可以帮助人们调节神经元进而治疗疾病。  北卡罗来纳大学和NIH的研究团队在四月三十日的Neuron杂志上发表文章介绍了这一成果。

华人学者Cell发表光遗传学重要成果

  加州理工(Caltech)的科学家们在大脑中发现了一个跷跷板回路,这个回路决定小鼠的行为是否合群。  自闭症患者往往不喜欢社交,更倾向于表现出孤僻的重复行为。 人们知道,自闭症与大脑杏仁体功能障碍有关,杏仁体结构参与了大脑中的情绪处理。现在,Caltech研究团队在小鼠杏仁体中发现了相互对立的两

Nature:喝多少水才算够?大脑原来是这样判断的

  关于人应该喝多少水的建议无处不在。但是,大脑是如何判断你已经喝够了水,从而让你感觉不再口渴的?加州大学旧金山分校(UCSF)于 3 月 27 日在《自然》(Nature)期刊上发表的一项新研究可能会给我们答案。  直到不久前,科学家们还认为,当大脑中被称为下丘脑的区域检测到血液中水分含量下降时,

终极挑战: 人类大脑研究计划

  今年3月,当斯坦福大学医学院的神经生物学家Bill Newsome在接到美国国立卫生研究院院长Francis Collins的电话时,他的第一反应非常惊愕。Francis Collins突然联系他,询问他是否愿意与其他科学家共同主持一个为期10年的大脑研究项目。在Newsome看来,这是

Cell子刊:超越光遗传学的新技术

  Chicago大学和Illinois大学的科学家们在三月十二日的Neuron杂志上发表文章指出,使用靶向性的金纳米颗粒,可以直接用光激活非基因改造的正常神经元。这是一个重大的技术进步,比目前的光遗传学方法更有优势。  “不需要遗传学改造,我们就能实现光遗传学刺激,”文章的资深作者,Chicago

Nature Methods:2016年最值得关注的八大技术

  《Nature Methods》盘点2015年度技术,选出了最受关注的技术成果:单粒子低温电子显微镜(cryo-EM)技术。 除此之外,也整理出了2016年最值得关注的几项技术,分别为:细胞内蛋白标记(Protein labeling in cells)、细胞核结构(Unraveling nuc

《自然》2016热点技术—精准光遗传学

  《Nature Methods》盘点2015年度技术,选出了最受关注的技术成果:单粒子低温电子显微镜(cryo-EM)技术。 除此之外,也整理出了2016年最值得关注的几项技术,分别为:细胞内蛋白标记(Protein labeling in cells)、细胞核结构(Unraveling nuc

6月7日《科学》杂志精选

  星尘陷阱是行星制造厂   据一项新的研究报告,环绕恒星做轨道运行的星盘,其中的一小块区域内的星尘可帮助解释行星形成的神秘一面。根据最知名的行星形成理论,行星是通过环绕恒星做轨道运行的大小在微米至毫米的星尘颗粒集结在一起并形成较大的团块而形成的。但让人不能完全理解的是,毫米大小星尘颗粒中较大的那

Nature封面:光遗传学解析关键神经元

  科学家们通过光遗传学技术,解析了两种帮助脊髓控制技巧性前肢运动的神经元:第一种是运动精确性所需的兴奋性中间神经元,第二种是运动流畅性所需的抑制性中间神经元。这一重要成果先后以两篇文章的形式发表,并且登上了本期的Nature杂志的封面。这些发现有助于人们进一步理解人类的运动功能,并在此基础上治疗创

Science绘制新型神经元参考图谱

  报道 神经科学家们获得了一份新的指南,可为他们开展研究工作了解果蝇神经结构的功能提供参考。来自霍华德休斯医学研究所和约翰霍普金斯大学的研究人员,记录了整个果蝇幼虫大脑活化神经元的行为效应并对其进行了分类。研究人员还发现,幼虫大脑的1万个神经元大多数为活化细胞。他们的研究成果在线发表在3月27

促进睡眠的大脑细胞

  近日,约翰霍普金斯大学的研究人员在小鼠大脑发现了一类神经元,它能关闭促觉醒神经元(wake-promoting neurons),可能在促进睡眠过程中扮演着重要角色。研究人员表示,新发现的脑细胞位于下丘脑未定带(zona incerta),或能为治疗睡眠障碍,如失眠和嗜睡症提供新的药物靶点。  

Nature揭示促进睡眠的大脑细胞

  近日,约翰霍普金斯大学的研究人员在小鼠大脑发现了一类神经元,它能关闭促觉醒神经元(wake-promoting neurons),可能在促进睡眠过程中扮演着重要角色。研究人员表示,新发现的脑细胞位于下丘脑未定带(zona incerta),或能为治疗睡眠障碍,如失眠和嗜睡症提供新的药物靶点。

《自然》:果蝇也爱碳酸饮料

盘旋在厨房的果蝇可能更容易被正在变成棕色的香蕉所吸引,或它还想喝上你的一口汽水。在8月30日的《自然》杂志上,来自美国加州大学伯克力分校的研究人员发表的文章报道说,果蝇能侦测并被溶解在水里的二氧化碳的味道所吸引。果蝇能尝二氧化碳的能力可能帮助它寻找更有营养的食物。这项研究由美国NIH隶属的失聪和其他

重大临床意义!PNAS报道全身麻醉后立即苏醒的新方法

  自从手术时全身麻醉在170年前首次推出后,没有发生根本性的改变。患者仍然是在停止使用麻醉药后自行苏醒。然而一些患者能采用相当数量的时间来唤醒,但这占用了昂贵的手术室,医务人员还得保持密切观察他们。  现在MIT和麻省总院的研究人员研究了人们恢复意识的机制,在患者全身麻醉后快速唤醒的疗法上又进了一

帕金森病治愈有望 光敏纳米线或有助于大脑疾病的治疗

  据悉,芝加哥大学研究人员研制出了一种光激活的纳米线,暴露在光线下时,通过刺激神经元可以使其着火。研究人员希望这种纳米线可以帮助理解复杂的大脑神经元回路,也可能用于治疗大脑紊乱。图片来源于网络  涉及基因变更神经元的光遗传学,作为一种研究工具和潜在的治疗方法已经引起了广泛关注。然而,一些研究人员对

Neuron:芝加哥科学家实现光遗传学技术新突破

  随着近年来科学家在表观遗传学领域研究的深入,人们开始希望通过体外刺激的方式来控制体内细胞尤其是神经元细胞的状态。这一领域有着广阔的应用前景,如治疗黄斑病变等遗传病。以此为基础,光遗传学等学科纷纷被建立起来。不过,目前为止,为了实现这一目标,研究人员不得不对神经元进行基因改造。这也极大阻碍了这一技

专访江小龙:3项新技术+反复枯燥的实验=里程碑式成果

  穷其一生我们大多数人都在渴望突破,但突破就像喵星人的尾巴,在追逐的过程中令人筋疲力竭,找到好的方法可能会事半功倍,那么要想获得一份科学突破,是百分之九十九的汗水更重要,还是百分之一的灵感更重要呢?也许每个人都有自己的答案,但对于贝勒医学院的江小龙博士来说,应该两者都很重要。   上个月江博士研究

解析果蝇幼虫“主演”的黑白短片

   Marta Zlatic拥有可谓最冗长乏味的影片资料库。在她位于美国弗吉尼亚州霍华德·休斯医学研究所珍妮莉亚研究园区的实验室中,这位神经科学家储存了2万多个小时、由果蝇幼虫“主演”的黑白短片。这些影片的主角正在做一些日常的事情,比如蠕动、爬行,但它们能帮助回答现代神经科学中的最重要问题之一 —