核磁共振成像原理概述

氢核是人体成像的首选核种:人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高、信号强,这是人们首选氢核作为人体成像元素的原因。NMR信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则NMR信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就是氢核密度的核磁共振图像。人体不同组织之间、正常组织与该组织中的病变组织之间氢核密度、弛豫时间T1、T2三个参数的差异,是MRI用于临床诊断最主要的物理基础。 当施加一射频脉冲信号时,氢核能态发生变化,射频过后,氢核返回初始能态,共振产生的电磁波便发射出来。原子核振动的微小差别可以被精确地检测到,经过进一步的计算机处理,即可能获得反应组织化学结构组成的三维图像,从中我们可以获得包括组织中水分差异以及水分子运动的信息。这样,病理变化就能被记录下来。 人体2/3的重量为水分,如此高的比例正是磁共振成像技术能被广泛应用于医学诊断的基础。......阅读全文

核磁共振成像原理概述

  氢核是人体成像的首选核种:人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高、信号强,这是人们首选氢核作为人体成像元素的原因。NMR信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则NMR信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就

核磁共振成像(mri)的概述

  核磁共振成像是近年来一种新型的高科技影像学检查方法,是80年代初才应用于临床的医学影像诊断新技术。它具有无电离辐射性(放射线)损害;无骨性伪影;能多方向(横断、冠状、矢状切面等)和多参数成像;高度的软组织分辨能力;无需使用对比剂即可显示血管结构等独特的优点。

核磁共振成像性能原理

  从宏观上看,作进动的磁矩集合中,相位是随机的。它们的合成取向就形成宏观磁化,以磁矩M表示。就是这个宏观磁矩在接收线圈中产生核磁共振信号。在大量氢核中,约有一半略多一点处于低等状态。可以证明,处于两种基本能量状态核子之间存在动态平衡,平衡状态由磁场和温度决定。当从较低能量状态向较高能量状态跃迁的核

核磁共振成像的原理简介

  原子核自旋,有角动量。由于核带电荷,它们的自旋就产生磁矩。当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。精确分析证明,自旋并不完全与磁场趋向一致,而是倾斜

核磁共振成像磁体部分组成概述

  磁体主要有主磁体(产生强大的静磁场)、补偿线圈(校正线圈)、射频线圈和梯度线圈组成。  主磁体用以提供强大的静磁场,而且要求较大的空间范围(能容纳病人),保持高度均匀的磁场强度。衡量磁体的性能有四条标准:磁场强度、时间稳定性、均匀性、孔道尺寸。增加静磁场强度可使检测灵敏度提高,即扫描时间缩短和空

核磁共振成像简介

  核磁共振成像(英语:Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(英语:spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),是利用核磁共振(nuclear magnetic reso

核磁共振成像特点

一、无损伤性检查。CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI投入临床20多年来,已证实对人体没有明确损害。孕妇可以进行MRI检查而不能进行CT检查。二、多种图像类型。CT、X线只有一种图像类型,即X线吸收率成像。而MRI常用的图像类型就有近10种,且理论上有无限多种图像类型。通过

何谓核磁共振成像技术

核磁共振成像技术(即MRI)是近十几年来发展起来的一项新技术。它无须借助X 射线,对人体免除了辐射危害。其成像清晰度极高,在不向椎管内注射造影剂的情况下,就可以达到近乎脊髓造影的分辨程度。较之计算机断层扫描和脊髓造影,核磁共振成像技术对于软组织的显影能力要更胜一筹,它可以直接观察脊髓和髓核组织、纤维

核磁共振成像发展历史

核磁共振成像术,简称核磁共振、磁共振或核磁,是80年代发展起来的一种全新的影像检查技术。它的全称是:核磁共振电子计算机断层扫描术(简称MRl)是利用核磁共振成像技术进行医学诊断的一种新颖的医学影像技术。核磁共振是一种物理现象,早在1946年就被美国的布劳克和相塞尔等人分别发现,作为一种分析手段广泛应

什么是核磁共振成像术

核磁共振成像术,是一种揭示人体“超原子结构(质子)”相互作用的“化学图像”的技术。要了解这一技术,就需要知道什么是核磁共振现象。我们知道,任何原子,如果它的原子核结构中,质子或中子的数目是奇数,或两者都是奇数时,这些原子的原子核,就具有带电和环绕一定方向的自旋轴自旋的特性。这样,原子核周围就存在着一

酶标仪的原理概述

  酶标仪实际上就是一台变相光电比色计或分光光度计,其基本工作原理与主要结构和光电比色计基本相同。光源灯发出的光波经过滤光片或单色器变成一束单色光,进入塑料微孔极中的待测标本。该单色光一部分被标本吸收,另一部分则透过标本照射到光电检测器上,光电检测器将这一待测标本不同而强弱不同的光信号转换成相应的电

血凝仪原理概述

  止血与血栓分子标志物的检测指标与临床各种疾患有着密切联系,如动脉粥样硬化,心脑血管疾病、糖尿病、动静脉血栓形成,血栓闭塞性脉管炎、肺栓塞、妊娠高血压综合症、弥散性血管内凝血、溶血尿毒综合症、慢性阻塞性肺炎等。中医药关于活血化瘀的理论与治疗工作研究也都涉及止血与血栓问题。为使临床准确运用这些指标进

血凝仪原理概述

    止血与血栓分子标志物的检测指标与临床各种疾患有着密切联系,如动脉粥样硬化,心脑血管疾病、糖尿病、动静脉血栓形成,血栓闭塞性脉管炎、肺栓塞、妊娠高血压综合症、弥散性血管内凝血、溶血尿毒综合症、慢性阻塞性肺炎等。中医药关于活血化瘀的理论与治疗工作研究也都涉及止血与血栓问题。为使临床准确运用这

对核磁共振成像的未来展望

  人脑是如何思维的,一直是个谜。而且是科学家们关注的重要课题。而利用MRI的脑功能成像则有助于我们在活体和整体水平上研究人的思维。其中,关于盲童的手能否代替眼睛的研究,是一个很好的样本。正常人能见到蓝天碧水,然后在大脑里构成图像,形成意境,而从未见过世界的盲童,用手也能摸文字,文字告诉他大千世界,

核磁共振成像技术步入分子层面

  美国和加拿大科学家分别采用新型核磁共振成像(MRI)技术观测到人体内的分子变化,从而大大提高了MRI扫描的速度和精度,可在未来用于更快地检测癌症等疾病。研究发表在最新一期《科学》杂志上。   两国科学家使用的MRI技术都通过操控分子的旋转来提高扫描的速度和精度,从而可以在分子层面快速地完成诸如

低场核磁共振成像仪

  低场核磁共振成像仪是一种用于食品科学技术领域的分析仪器,于2018年12月2日启用。  技术指标  NMI20系列核磁共振成像分析仪,集弛豫分析和磁共振成像于一体,探头内径达40mm,以满足不同大小样品的测试需求,目前已广泛应用于食品研究。NMI20系列核磁共振设备采用稀土永磁体制造,无后续维护

核磁共振成像可观察基因表达

  基因就如同开关一样,知道哪些基因开启,对于疾病的治疗和监控至关重要。美国加州理工学院研究人员23日在《自然·通讯》杂志线上版发表论文称,他们开发出一种新方法,使用常见的核磁共振成像(MRI)技术,即可观察到体内细胞的基因表达情况。   在MRI过程中,体内氢原子(大多包含在水分子和脂肪中)被电磁

简介核磁共振成像弛豫过程

  用梯度磁场对共振信号作空间编码(定位)的办法得到的图像,实质上是人体组织内质子的密度图。磁共振象素值反映的横向磁化不但与质子数量有关,而且与它们的运动特性,即所谓“弛豫时间”有关。  在自由进动阶段,磁化向量经过一个称为“弛豫”的过程,回到它的原始静止位置。弛豫过程的特性由时间常数T1和T2描述

核磁共振成像主磁体的分类

  主磁体分三类:普通电磁体、永磁体和超导磁体。普通电磁体是利用较强的直流电流通过线圈产生磁场。维持一个主磁体磁场的耗电约为100kW。一般需要通电数小时后,磁场才能达到稳定状态。线圈中流过大电流将产生大量热,要通过热交换器以冷却水散热。永磁材料经外部激励电源一次充磁后,去掉激励电源仍长期保持及磁性

低场核磁共振成像与分析系统

  低场核磁共振成像与分析系统是一种用于化学、物理学、药学领域的科学仪器,于2015年1月4日启用。  技术指标  1.磁体类型:永磁体(样品腔竖直放置);2.磁场强度:0.5±0.05T;3.磁场均匀度:≤30ppm(30mm×30mm×35mm);4.磁场稳定性:≤300Hz/Hour;5.磁体

核磁共振成像(mri)的注意事项

  不能检查的人群:怀孕3个月以内的孕妇、体内有磁铁类物质者,如装有心脏起搏器、动脉瘤等血管手术后,人工瓣膜,重要器官旁有金属异物残留的人群。  检查前:  (1) 要向技术人员说明以下情况:① 有无手术史;② 有无任何金属或磁性物质植入体内包括金属节育环等;③ 有无假牙、电子耳、义眼等;④ 有无药

核磁共振成像仪的技术应用

NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱。核磁共振的特点:①共振频率决定于核

核磁共振成像(mri)的临床意义

  适应症:  (1) 神经系统的病变包括肿瘤、梗塞、出血、变性、先天畸形、感染等几乎成为确诊的手段。  (2) 特别是脊髓脊椎的病变如脊椎的肿瘤、萎缩、变性、外伤椎间盘病变,成为首选的检查方法。  (3) 心脏大血管的病变;肺内纵膈的病变。  (4) 腹部盆腔脏器的检查;胆道系统、泌尿系统等明显优

概述酶标仪的工作原理

  酶标仪就是应用酶标法原理的仪器,酶标仪类似于一台变相光电比色计或分光光度计,其基本工作原理与主要结构和光电比色计基本相同。  光源灯发出的光波经过滤光片或单色器变成一束单色光,进入塑料微孔极中的待测标本.该单色光一部分被标本吸收,另一部分则透过标本照射到光电检测器上,光电检测器将这一待测标本不同

概述羊膜穿刺的原理

  医生可以通过抽取羊水得到胎儿的皮肤、肠胃道、泌尿道等的游离细胞,利用这些游离细胞进一步分析胎儿的染色体是否异常。  抽取羊水主要是分析胎儿的染色体组成,其中最重要且常见的就是唐氏综合征。有些单基因疾病,如乙型海洋性贫血、血友病等,也可以通过检验羊水细胞内的基因(DNA组成)得到诊断。  此外,有

面筋测定系统原理概述

     面筋测定系统用面筋洗涤仪和面筋离心、指数测定仪来测定湿面筋的数量和质量特性。     湿面筋是小麦粉面团用面筋洗涤仪洗去淀粉后得到的弹塑性物质,它由麦醇溶谷蛋白和麦蛋白组成。     面粉或全麦粉通过洗涤得到的湿面筋,装入指数盒内,在标准条件下加以离心,迫使其通过指数盒标准筛网,然后用专用

Illumina-测序技术原理概述

基因的变异类型有多种(点击查看),对应的分子检测方法亦有多种,针对不同的需求,都有对应的理想检测方法,每个检测平台都有着自己的优势,比如:操作简单:PCR,ARMS-PCR,HRM等时间快速:ARMS-PCR,HRM等成本低:PCR,PCR-RFLP,MassARRAY等准确:Sanger等通量高:

恒温水槽原理概述

恒温水槽控温由下面几部分组成:加热部分:用电加热管给恒温水槽加热测温部分:一般用工业用铂热电阻作为测温元件,将测得的温度值转换成相应的电阻信号给配套的显示调节仪表显示恒温水槽内温度调节控制部分:温度显示调节仪表根据测得的恒温水槽内温度与设定的温度之差进行PID(比例、积分、微分)调节后控制可控硅导通

核磁共振成像(mri)的相关疾病有哪些

  基底核钙化症,迟发性运动障碍,投掷运动,书写痉挛,肌张力障碍综合征,副肿瘤性脊髓病,神经系统先天性疾病,克拉伯病,夏伊-德雷格综合征,纹状体黑质变性

核磁共振成像技术实验仪的功能

    核磁共振成像技术实验仪功能更强大,可开设更多教学内容的核磁共振教学仪器,可满足近代物理、医学影像、生物医学工程等不同的实验要求。MRIjx-Advance型磁共振成像教学实验仪不仅可用于教学,还可以用于科研做为大学生、研究生进行拓展性实验的平台。  一、核磁共振成像技术实验仪两大特点:开放性