Antpedia LOGO WIKI资讯

Nature|破解领域难题:BRCA1如何被募到DNA双链断裂位点?

同源末端重组 (HR) 和非同源末端重组 (NHEJ) 是细胞遭受DNA双链断裂 (DSBs) 之后进行损伤修复的两个重要武器,并分别由各自通路中的关键蛋白BRCA1 (HR) 和53BP1 (NHEJ) 所介导。它们的相同之处在于,BRCA1和53BP1都需要同时结合在H2AK15ub (由泛素E3连接酶RNF168催化) 和H4K20这两个位点而被招募到损伤位点;不同的是,53BP结合H4K20位点需要携带甲基化修饰(H4K20me1和H4K20me2),而BRCA1则识别非甲基化的H4K20 (H4K20me0),这种表观状态只会在DNA复制期间 (G1期) 出现在新合成的组蛋白上。因此,HR和NHEJ通常各司其职,并在不同的细胞周期中各自发挥功能【1,2】。 现在已知的是,53BP1会分别通过其TTD (tandem-Tudor domain) 和UDR (ubiquitin-dependent recruitme......阅读全文

Nature | 破解领域难题:BRCA1如何被募到DNA双链断裂位点?

  同源末端重组 (HR) 和非同源末端重组 (NHEJ) 是细胞遭受DNA双链断裂 (DSBs) 之后进行损伤修复的两个重要武器,并分别由各自通路中的关键蛋白BRCA1 (HR) 和53BP1 (NHEJ) 所介导。它们的相同之处在于,BRCA1和53BP1都需要同时结合在H2AK15ub (由泛

军事医学科学院Nature子刊揭示DNA修复新机制

  来自军事医学科学院放射与辐射医学研究所、美国梅奥诊所(Mayo Clinic)、华盛顿大学等处的研究人员证实,细胞周期依赖性BRCA1–UHRF1级联反应调控了DNA双链断裂修复信号通路的选择。这一研究发现发布在1月5日的《自然通讯》(Nature Communications)杂志上。  军事

Nature重头论文:破解疾病易感位点

  横跨三大洲,全球23家研究机构的遗传学家,儿科医生,外科医生和流行病学家组成的一个国际研究小组公布了一项最新研究成果 ――找到了最常见的非综合征型颅缝早闭(non-syndromic craniosynostosis)在人类基因组中的关联区域,这是一种颅骨骨板过早关闭的疾病。  

Nature: 在非分裂期细胞中实现基因打靶的可能

  基因打靶技术,是利用同源重组的方法,建立基因定点敲除细胞系或获得基因定点敲除动物。无论CRISPR/Cas还是TALEN,都是通过造成靶位点的双链断裂,诱导靶基因产生突变。而通过同源重组实现的DNA修复在G1期的细胞中是高度抑制的,以确保有丝分裂只发生在姐妹染色单体之间。因而只也是在DNA复制之

百人学者最新Nature文章:破解DNA折纸难题

  2006年,加州理工大学Paul Rothemund开发出了用长链DNA折叠规定形状的DNA折纸(DNA origami)技术,这一技术近年来迅猛发展,一些科学家预言人类将从“非生命产品”制造业转化为“有生命产品”制造业的无限可能。换句话说,未来你手中拿的每一样东西都拥有一套属于自己的DNA。

德研究发现与DNA双链断裂修复相关基因

  德国研究人员在寻找参与修复脱氧核糖核酸(DNA)双链断裂的基因方面获得进展。研究小组在人类细胞中找到61个位点,并发现了此前未知的与DNA双链断裂修复有关的基因。该研究结果将显著加速DNA修复基因的继续搜寻,并带来新的医疗应用可能。相关研究成果发表在6月29日的《公共科学图书馆·生物学》杂志上。

DNA双链断裂检测——变压场凝胶电泳(GFGE)

DNA双链断裂与细胞死亡的关系更为密切。变压场凝胶电泳是采用将细胞包埋在低熔点琼脂糖凝胶中,通过蛋白酶、去污剂等渗入凝胶中融解细胞、去蛋白,纯化细胞DNA,再通过梯增电压进行琼脂糖凝胶电泳,结合DNA解旋荧光测定(FADU)法和检测DNA双链断裂。 1、主要试剂及配制方法: (1)蛋白酶K,

同济大学等处Genes&Dev揭示DNA修复的新型调节因子

  生物通报道:来自同济大学医学院、美国梅奥诊所(Mayo Clinic)和军事医学科学院放射与辐射医学研究所等处的研究人员,将UHRF1确定为DNA修复的一个新型调节因子,并揭示了一种模型,在这种模型中磷酸化-去泛素化级联反应动态地调节着BRCA2–RAD51通路。这一研究结果发布在12月9日的《

与DNA双链断裂修复相关新基因被发现

  德国研究人员在寻找参与修复脱氧核糖核酸(DNA)双链断裂的基因方面获得进展。研究小组在人类细胞中找到61个位点,并发现了此前未知的与DNA双链断裂修复有关的基因。该研究结果将显著加速DNA修复基因的继续搜寻,并带来新的医疗应用可能。相关研究成果发表在6月29日的《公共科学图书馆·生

Nature子刊:组蛋白与DNA损伤修复

  我们的机体是由亿万个细胞组成的,这些细胞就像是一个个繁忙的工厂,不断有分子在其中生成、去除和修饰,这些过程不可避免的会出现错误。举例来说,UV照射和许多其他因素都可能导致DNA链断裂。   为了确保自己的生存和增殖,细胞采取了一些修复损伤的措施。虽然DNA修复一直是研究的热点,但人们对这一基