我国学者研制出可拓展成像质量的新型光学元件

记者从中国科学技术大学获悉,近期该校张斗国教授研究组研制出一种基于光学薄膜的平面型显微成像元件,用于被测样本的载玻片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,获取高对比度的光学显微图像。 利用光学原理,光学显微镜可把人眼不能分辨的微小物体放大成像。常规的光学显微镜是明场显微镜,它利用光线照明和样本中各点依其光吸收的不同,在明亮的背景中成像。但对于一些未经染色处理的生物标本或其他透明样本,由于其对光线的吸收很少,因而对比度差,难以观测。暗场显微镜、全内反射显微镜的问世,可解决这一难题,但它们需要复杂的光学元件,这些元件体积较大,不易集成且操作难度高。 近期,张斗国教授研究组通过巧妙设计,研制出一种基于光学薄膜的平面型显微成像元件,该元件在常规明场显微镜上,可同时实现暗场显微成像和全内反射成像。相对于明场光学显微镜像,其成像对比度有大幅度提升。 同时,这一元件结构简单,易于集成,成本较低,操作便利,不仅适......阅读全文

Nature-Communications:我国研制光学薄膜的平面显微成像元件

  近日,中国科大物理学院光电子科学与技术安徽省重点实验室/合肥微尺度物质科学国家研究中心张斗国教授研究组提出并实现了一种基于光学薄膜的平面型显微成像元件,用作被测样本的载波片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,而获取高对比度的光学显微图像。研究成果以“Planar phot

中国科大研制出基于光学薄膜的平面型显微成像元件

  近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室/合肥微尺度物质科学国家研究中心教授张斗国研究组提出并实现了一种基于光学薄膜的平面型显微成像元件,用作被测样本的载波片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,从而获取高对比度的光学显微图像。研究成果以Planar

中国科大研制出基于光学薄膜的平面型显微成像元件

近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室/合肥微尺度物质科学国家研究中心教授张斗国研究组提出并实现了一种基于光学薄膜的平面型显微成像元件,用作被测样本的载波片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,从而获取高对比度的光学显微图像。研究成果以Planar ph

光学薄膜概论

光学薄膜概论光学工业除了镜片的研磨,系统之设计以外,有一项科技是发展高级光学仪器所不可缺的,就是光学薄膜的蒸镀技术。何谓光学薄膜,就是在镜片上镶上一层或多层非常薄的特殊材料,使镜片能达到某种特定的光学效果。我们所常见的太阳眼镜,抗反射镜片就是一个光学薄膜在日常生活上zui简单的应用 。其他如各种反射

前沿显微成像技术专题——超分辨显微成像(1)

从16世纪末开始,科学家们就一直使用光学显微镜探索复杂的微观生物世界。然而,传统的光学显微由于光学衍射极限的限制,横向分辨率止步于 200 nm左右,轴向分辨率止步于500 nm,无法对更小的生物分子和结构进行观察。突破光学衍射极限,一直是科学家们梦想和追求的目标。虽然随着扫描电镜、扫描隧道显微镜及

前沿显微成像技术专题——超分辨显微成像(2)

上一期我们为大家介绍了几种主要的单分子定位超分辨显微成像技术,还留下了一些问题,比如它的分辨率是由什么决定的?获得的大量图像数据如何进行重构?本期我们就来为大家解答这些问题。单分子定位超分辨显微成像的分辨率单分子定位超分辨显微成像的分辨率主要由两个因素决定:定位精度和分子密度。定位精度是目标分子在横

我国学者研制出可拓展成像质量的新型光学元件

  记者从中国科学技术大学获悉,近期该校张斗国教授研究组研制出一种基于光学薄膜的平面型显微成像元件,用于被测样本的载玻片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,获取高对比度的光学显微图像。  利用光学原理,光学显微镜可把人眼不能分辨的微小物体放大成像。常规的光学显微镜是明场显微镜

光学薄膜的定义

由薄的分层介质构成的,通过界面传播光束的一类光学介质材料。

光学薄膜的应用

光学薄膜的应用始于20世纪30年代。现代,光学薄膜已广泛用于光学和光电子技术领域,制造各种光学仪器。

光学薄膜的分类

  光学薄膜的分类   光学薄膜是由膜的分层介质构成,通过界面传播光束的一类光学介质材料,它的应用始于20世纪30年代,现在已广泛应用于光学和光电子技术领域,制造各种光学仪器。   传统光学薄膜   传统的光学薄膜是以光的干涉为基础。光波是一种电磁波,根据其波长的不同可分成红外线、可见光和

新元件可实现暗场显微成像和全内反射成像

中国科学技术大学张斗国教授研究组研制出一种基于光学薄膜的平面型显微成像元件,用作被测样本的载波片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,获取高对比度的光学显微图像。相关研究成果日前发表于《自然—通讯》。光学显微镜是利用光学原理,把人眼不能分辨的微小物体放大成像。常规的光学显微镜是

新元件可实现暗场显微成像和全内反射成像

  中国科学技术大学张斗国教授研究组研制出一种基于光学薄膜的平面型显微成像元件,用作被测样本的载波片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,获取高对比度的光学显微图像。相关研究成果日前发表于《自然—通讯》。  光学显微镜是利用光学原理,把人眼不能分辨的微小物体放大成像。常规的光学

显微镜成像因素

由于客观条件,任何光学系统都不能生成理论上理想的像,各种相差的存在影响了成像质量。下面分别简要介绍各种相差。 1、色差 色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色差。白光由红 橙 黄 绿 青 蓝 紫 七种组成,各种光的波长不同 ,所以在通过透镜时的折射率也不同,这样物方

显微镜成像原理

    显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜。显微镜成像原理:      显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸

显微镜成像原理

其实普通的光学显微镜是根据凸透镜的成像原理,要经过凸透镜的两次成像.第一次先经过物镜(凸透镜1)成像,这时候的物体应该在物镜(凸透镜1)的一倍焦距和两倍焦距之间,根据物理学的原理,成的应该是放大的倒立的实像.而后以第一次成的物像作为“物体”,经过目镜的第二次成像.由于我们观察的时候是在目镜的另外一侧

光学薄膜的应用特点

光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。实际应用的薄膜要比理想薄膜复杂得多。这是因为:制备时,薄膜的光学性质和物理性质偏离大块材料,其表面和界面是粗糙的,从而

光学薄膜技术介绍

 薄膜应力研究的重要性  光学多层膜系统已经广泛的应用于微电子系统,光学系统等,而由于薄膜应力的存在,对系统的功能与可*性产生很大的影响,它不仅会直接导致薄膜的龟裂、脱落,使薄膜损坏,而且会作用基体,使基体发生形变,从而使通过薄膜组件的光波前发生畸变,影响传输特性。更重要的是,薄膜在激光辐照下,由于

光学薄膜缺陷的特点

光学薄膜缺陷的特点  薄膜缺陷的研究大约从1970开始,刚开始薄膜缺陷被表征为薄膜表面特征,认为是一种典型的粗糙度,在一些文献中薄膜缺陷被描述为节瘤。 Guenther首先对光学薄膜缺陷进行研究,他指出节瘤是在镀膜过程中对外部干扰颗粒形状相似复制而形成的;现在薄膜缺陷越来越引起人们的重视,很多文献建

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜

NanoCalc光学薄膜厚度测量系统

NanoCalc 光学薄膜厚度测量系统NanoCalc是一种用户可配置的膜厚测量系统,它利用分光光谱反射仪来精确地测量光学或非光学薄膜厚度,可广泛应用于半导体、医疗和工业生产中。利用白光干涉测量法的原理,NanoCalc用一个宽波段的光源来测得不同波长的反射数据,由于反射率n和k随膜厚的不同而变化,

活细胞成像显微镜

  活细胞成像显微镜是一种用于生物学领域的分析仪器,于2012年3月15日启用。  技术指标  固态光源SSI(含7条激发谱线),高精度电动载物台(X、Y:20nm,Z:5nm),CalSnapHQ2 CCD.EMCCD.湿控及CO2系统装置,自动对焦装置(焦距时间100ms,精度25nm)。10×

显微镜的成像原理

光学显微镜光学显微镜的原理光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。经显微镜到人眼的物体都成倒立放大的虚像

显微镜的成像原理

显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大

徕卡显微镜成像系统

徕卡生物显微镜物镜是zui重要的成像透镜,常被认为是电镜的心脏。物镜的像差也是各级成像透镜中影响zui大考.所以对物镜的要求是尽量减小像差,尤其是球差、色差、衍射差和像散。因为它们决定了电镜的分辨宰。研究表明,球差系数e和色差系数q近似等于透镜的焦距/*因此为提高分辨率,应该减小物镜的焦距;为了实现

显微镜的成像原理

显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大

光学显微镜成像原理

学生用的显微镜是反像,上下左右与实际物体正好相反。物镜放大率乘以目镜放大率就是总放大倍数。

显微镜的成像过程

倒置与正置显微镜的区别1.显微镜的成像过程:光源(传统显微镜为自然光源,现多为人工光源)通过反光镜再到光圈投射到被检物上,北京物反射光源后光学穿过物镜,经过折射在镜头内形成物体放大的实像,再通过目镜把通过物镜的像进一步放大zui终进入人眼观察。2.显微镜放大倍率的计算:显微镜实际放大倍数为物镜的放大

金相显微镜成像原理

  当把待观察物体放在物镜焦点外侧靠近焦点处时,在物镜后所成的实像恰在目镜焦点内侧靠近焦点处,经目镜再次放大成一虚像。观察到的是经两次放大后的倒立虚像。

显微荧光成像相机选购必备

众所周知,显微荧光成像是一种相对特殊的成像研究,如果说一般的显微成像拍摄还可以用普通的相机,那荧光成像确是一定要用专业的冷CCD相机才可以的。鉴于荧光成像光源一般较弱,要想的到良好的显微图片,还真不是一件容易的事。对于需要用到显微荧光成像的用户,建议是一定要买一款制冷的CCD相机,相对于不制冷的CC