氢化物发生/冷蒸气发生法的基本原理

氢化物发生/冷蒸气发生法是利用还原剂将样品溶液中的待测组分还原为挥发性氢化物或冷原子蒸气,然后借助载气流将其导入原子光谱分析系统进行测量。随后,许多化学工作者致力于研究不同的还原体系、报道的有金属-酸还原体系、氢化物-酸还原体系和电化学还原体系。......阅读全文

氢化物发生/冷蒸气发生法的基本原理

氢化物发生/冷蒸气发生法是利用还原剂将样品溶液中的待测组分还原为挥发性氢化物或冷原子蒸气,然后借助载气流将其导入原子光谱分析系统进行测量。随后,许多化学工作者致力于研究不同的还原体系、报道的有金属-酸还原体系、氢化物-酸还原体系和电化学还原体系。

氢化物(冷蒸气)发生模式

氢化物发生的模式是指发生氢化物时的初始状态,而不涉及反应的最终状态,所以无论是“酸性模式”还是“碱 性模式”,其反应的最终产物都是相同的,包括反应废液的酸度也是相同的。这两种模式的最大区别在于“酸性模式”下,待测元素存在于酸性溶液中,与碱性的还原剂发生反应生成氢化物;而“碱性模式”下,待测元素溶解于

氢化物发生/冷蒸气发生法的方法的使用范国

①待测元素必须能够生成氢化物或挥发性化合物,且生成物的稳定性必须满足能够被送人原子化器,而且能在原子化器中原子化;②采用ND检测方式要求用于检测的光谱带必须避开原子化器(常用ArH2火焰原子化器)和日光的背景谱带,日盲区(190~310nm)正好能够满足这一要求,所以HG/CVG-NDAFS可测元素

铅元素氢化物(冷蒸气)发生过程

Pb 的氢化物发生反应较为特殊,当没有其他助剂时,Pb 和硼氢化钾或硼氢化钠(tetrahydroborate,THB)的反应非常微弱,氢化物发生效率很低,几乎没有实际应用价值。当在反应体系中引入少量氧化剂或络合剂[如 H2O、亚硝基 R 盐、K3Fe(CN)6、酒石酸等]后,Pb 的氢化物发生能力

锌(Zn)元素氢化物(冷蒸气)发生介绍

干效 Zn 发生 HG 反应的酸度范围比较窄,需要应严格控制反应的酸度。Zn 是易污染元素,配制溶液过程中应注意人手上的汗液所含 Zn 的沾染,也应注意来自其他方面的 Zn 污染。

镉(Cd)元素氢化物(冷蒸气)发生介绍

Cd 与 THB 的反应最终的产物是 Cd 的原子,但可能在反应中存在极不稳定的 CdH2 中间态,所以虽然 Cd 与 Hg类似,发生的也是 CVG 反应,但 Cd 不能像 Hg 一样在0.05%的 THB 下就能够发生出冷原子,而是需要大于1%的 THB 才能有效地被发生出来。Feng 等采用的液

氢化物发生法

氢化物发生法的概述:碳、氮、氧族元素的氢化物是共价化合物。其中As、Sb、Bi、Sn、Se、Te、Pb、Ge 8种元素的氢化物具有挥发性,通常情况下为气态,借助载气流可以方便的将其导入原子光谱分析的原子化器或激发光源中,然后进行定量光谱测量,这个过程也是测定这些元素的zui佳样品引入方法。用常规的原

氢化物(冷蒸气)原子化及机理

1、热解原子化在原子吸收法中,氢化物在常用的加热石英管中的原子化机理问题。尽管如此,一般的意见认为氢化物沸点低、易分解,只要有足够高温,氢化物会直接热解形成自由气态原子。例如 Thompson 和 Thoresby 认为,砷化氢在加热石英管中是由于“热解原子化”;而 Verlinden 等用电加热石

氢化物发生法的概念和用途

它能达到富集、消除和减轻主成分对测定的影响、改善痕量分析灵敏度的效果。能转变为氢化物的元素称为氢化物生成元素或氢化元素,包括8个元素:砷、锑、铋(形成MH3),硒、碲(形成H2M),锗、锡、铅(形成MH4)。氢化物发生早期采用活泼金属锌与盐酸或硫酸的反应体系,在酸性试样溶液中加入锌粒,锌与酸反应产生

氢化物(冷蒸气)的气相分离富集技术气球收集法

气球收集法并不是严格意义上的富集方法,它主要是用于解决 Zn-酸体系中氢化物发生较慢的问题而提出的。其实施方法 是:先将 HG 反应中产生的氢化物及氢气收集在一个气球中,反应结束后,将氢化物及氢气一次送入原子化器中进行检测。这种收集法有一个固有缺点:多数氢化物在常温下不稳定,在收集过程中容易分解并吸

氢化物(冷蒸气)的气相分离富集技术固体吸附法

迄今为止,大多数用固体物质吸附氢化物的工作都是利用在气相色谱柱中填充的固定相完成的,而所有这些工作的考虑基本上都是以分离而不是以富集为主要目的。在分光光度测定中,也有用固体 KBrO3-KH2PO4 吸附氢化物的报道。利用固相物质吸收:吸附富集氢化物后采用原子光谱测定的工作还做得不多, Reamer

氢化物(冷蒸气)的气相分离富集技术溶液吸收法

这一方法是利用氢化物和溶液的反应将氢化物富集于溶液中, 吸收液体系有如 Ag-DDC,HgCl2,AgNO3 等。因为所采用的氢化物的吸收体系吸收富集氢化物后,通常是把吸收液直接进样引入原子化器原子化测 定,不可避免地存在着吸收液基体的干扰,没有把利用氢化物发生技术可去除样品基体影响的特长很好地发挥

汞的蒸气发生反应

Hg 是涉及的11种元素中非常特别的一个,其特别之处有两点:①非常容易还原生成单原子蒸气,使用 SnCl2 这样的弱氧化剂也能使其完全还原;②其单原子蒸气化学稳定性极高,即便在较高温度的氧气中也不会被氧化,所以很多含汞化合物可以通过燃烧来获得汞蒸气。正因为具备以上两个特点,所以汞可以通过三种方式进行

氢化物发生─冷原子吸收法测定食物中的汞

1实验部分1仪器与试剂1仪器原子吸收光谱仪WHG-103A氢化物发生器(北京瀚时制作所)WNA-1型金属套玻璃高效雾化器纯水器1.1.2 试剂  混酸HNO3+HCLO4=5+1(V/V)  高锰酸钾1%(W/V)  载流1%HCL(V/V)  介质4%H2SO4(V/V)  参照物:大米中Hg G

氢化物发生原子吸收光谱法

方法提要水样中二价硒和六价硒分别氧化和还原成四价硒,经硼氢化钾还原为硒化氢,用氢化物发生-原子吸收光谱法测定。如果只需测四价和六价硒,水样可不经消化处理;又如只需四价硒,水样可不经过消化和还原步骤,只需将水样调节到测定范围内直接测定。本法最低检测质量为0.01μg。取50mL水样处理后测定,检测下限

氢化物发生—原子荧光法基础

原子荧光法的分析对象原理上与原子吸收光谱法和原子发射光谱法相同,可以进行数十种元素的定量分析,但迄今为止,原子荧光光谱法还是最成功的应用于易形成气态氢化物的8种元素(As、Sb、Bi、Se、Ge、Pb、Sn、Te)以及Hg。20世纪末,郭小伟等人又将此法应用于两种可形成气态组分的元素——Cd和Zn。

氢化物(冷蒸气)的气相分离富集技术热表面捕集法

热表面捕集法是先将氢化物捕集在加热的表面上,然后再升温释放进行后续检测的一种技术,多用于电热原子吸收光谱(ETAAS), 又因其配接的 ETAAS 仪器不同,细分为基于 T 形管的捕集技术和基于石墨炉的捕集技术两种方法。基于 T 形管的捕集技术[原理见下图a]捕集区位于其下部,与原子化区不重合,其捕

氢化物(冷蒸气)的气相分离富集技术液氮冷却捕集法

液氮冷却捕集法是将氢化物收集在浸泡于液氮中的 U 形管中, 捕集后再加热放出检测。此法优点为仅有氢化物被捕集,大量氢气直接排空,相当于进行了很大比例的浓缩。另外,捕集器多用可快速加热的不锈钢材料制成,在加热后可迅速释放出氢化物,从而得到非常高的灵敏度(采用峰高方式时),所以又被称为“冷聚焦”法。如果

氢化物发生原子吸收法中的干扰分类

Dedina曾对氢化物-原子吸收法中的干扰做了系统的分类,并指出,液相干扰产生在氢化物形成或形成的氢化物从样品溶液中逸出的过程中,是由于氢化物发生速度的改变(发生动力学干扰)或者是由于发生效率的改变,即转化为氢化物的百分比的改变而引起的。  气相干扰一般在氢化物传输过程中或在原子化器中产生,因为又可

PAO气溶胶发生器热发生和冷发生区别

PAO气溶胶发生器可分为热发生和冷发生两种,热发生器是利用蒸发冷凝的原理,被雾化的气溶胶粒子用加热器蒸发,并在特定条件下冷凝成微小液滴,去掉过大和过小的液滴后留下0.3um左右的雾状DOP进入风道,粒径分布在0.1~0.3um。 冷发生器是指利用压缩空气在液体中鼓气泡,经laskin喷管飞溅产生物态

水蒸气发生器的简介

FD-WG型水蒸气发生器是一套可以独立完成液体流量调节、蒸汽温度控制,可实现蒸汽定量、恒温的装置。外观展示 水蒸气发生器主体结构解析蒸气发生器操作流程(1)插上电源线,打开电源开关(电源插口处);(2)设置汽化温度,按移动键到个十百位,按增加和减少键设置所需汽化温度数值,按确认键结束(汽化温度设置为

火焰氢化物发生器

  一、经多年对流动注射氢化物的研究,在实际检测中发现,可对氢化物元素利用火焰作分析据有以下优点.   1.使用方便,可利用火焰的有利条件作基础,不用另改条件对As、pb. Se、Sb、Bi、Pb、Sn、Te、Ge的有效的检测。   2.速度快,方法简便,宜操作。   3. 清洗方便,不会产生

火焰氢化物发生器

  一、经多年对流动注射氢化物的研究,在实际检测中发现,可对氢化物元素利用火焰作分析据有以下优点.   1.使用方便,可利用火焰的有利条件作基础,不用另改条件对As、pb. Se、Sb、Bi、Pb、Sn、Te、Ge的有效的检测。   2.速度快,方法简便,宜操作。   3. 清洗方便,不会产

氢化物发生器的特点

本系列发生器所拥有的优特点:    ⑴. 吴氏气动自动化技术:用载气气源自动进液(取代蠕动泵)系统、量液系统(定量进样)、多通道开关气阻、稳流器呼吸管等,是利用载气气源压力和电子元器件进行工作的自动化体系,电子程序——时间控制器等都装置精巧, 性能优于全气动、全电动自动化体系。    ⑵. 自动化程

硒量的测定-氢化物发生

1 范围本方法规定了地球化学勘查试样中硒含量的测定方法。本方法适用于水系沉积物及土壤试料中硒量的测定。本方法检出限(3S):0.01μg/g硒。本方法测定范围:0.03μg/g~25μg/g硒。2 规范性引用文件下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。下列不注日期的引用文件,其最

氢化物发生原子吸收光谱法测砷

1. 原理 样品经湿消化处理后,加入还原剂使五价砷还原为三价砷,再加入硼氢化钠或硼氢化钾还原生成砷化氢,由氩气载入火焰原子化器中分解为原子态砷蒸气吸收波长193.7nm的共振线,其吸收量与砷含量成正比,与其标准系列比较定量。2. 试剂 实验用水为石英亚沸高纯水或电阻率80万欧姆以上的去离子水。所有试

火焰氢化物发生器说明

前言经多年对流动注射氢化物的研究,在实际检测中发现,可对氢化物元素利用火焰作分析据有以下优点.1.使用方便,可利用火焰的有利条件作基础,不用另改条件对As、pb. Se、Sb、Bi、Pb、Sn、Te、Ge的有效的检测。2.速度快,方法简便,宜操作。 3. 清洗方便,不会产生记忆效应。       制

氢化物发生器的相关维护

氢化物发生器是产生氢化物的器具。    氢化物发生器升温快速, 安装方便,温度稳定;    使用寿命比火焰加热长10倍以上, 免去燃料消耗,只要取下石英管即可迅速改变分析方式。    氢化物发生器日常维护及故障排除:    1、使用和存放时都不可将发生器到放,以免呼吸管内水流出,在零度以下运输或室内

冷蒸气原子吸收光谱法

冷蒸气原子吸收光谱法cold-c-a}c}ur atomic ahsnrptic}nspedruscnpy ;cold一二pour atomic absorption spectrometry用原子吸收光谱法测定试样经化学反应形成汞蒸气(称冷蒸气)含量的方法。汞在酸性溶液中被还原剂(如StzL;lz

什么是氢化物发生原子荧光光谱法

是利用某些能产生原生态氢的还原剂,通过化学反应,将样品溶液中的待测组分还原为挥发性共价氢化物,然后借助载气流将其导入原子荧光分析系统进行测量的方式。元素砷As、锑Sb、铋Bi、锡Sn、硒Se、碲Te、铅Pb、锗Ge、锌 Zn 、镉Cd、汞Hg等可以用这种方法进行测定。处于激发态的原子寿命是十分短暂的