研究阐释人类端粒DNA合成关键分子机制

近日,中国科学院大连化学物理研究所分子模拟与设计研究组研究员李国辉团队与上海交通大学医学院精准医学研究院教授雷鸣、武健团队等合作,在人类端粒DNA合成关键分子机制研究方面取得新进展。 端粒是位于真核生物染色体末端的DNA-蛋白复合体,用于保护染色体在细胞分裂过程中的完整性。端粒的DNA会随着细胞的每次分裂而逐渐缩短,一旦染色体末端端粒DNA消化殆尽,染色体将被降解或发生融合,细胞则会立即启动凋亡机制。因此,端粒被认为与细胞衰老密切相关,是人类抗衰老研究的重点。 在细胞分裂的过程中,端粒酶将被同时激活用于合成端粒DNA,以补偿端粒在该过程中的损失。人类端粒酶是一种具有逆转录酶活性的多亚基核糖核蛋白复合物,其功能缺失与人类多种端粒综合症有关,如先天性角化不良(dyskeratosis congenita, DC)和小脑发育不全综合症(Hoyrara Hreidarsson syndrome,HHS)等。在传统逆转录酶合成DNA的......阅读全文

端粒DNA主要组成

端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。端粒DNA主要功能有:第一,保护染色体不被核酸酶降解;第二,防止染色体相互融合;

端粒DNA-序列的概念

端粒DNA 序列(telomere DNA sequence,TEL)端粒的功能是与端粒酶结合,完成染色体末端复制。端粒酶以其自身的RNA 为模板,在染色体端部添加上端粒的重复序列。作为模板的RNA 比较短,含有1.5 个端粒重复单元。端粒结构还能防止染色体融合及降解。端粒是保护DNA分子中的基因的

关于DNA复制端粒和端粒酶的内容

  在1941年,美籍印度人麦克林托克(Mc Clintock)就提出端粒(telomere)的假说,指出染色体末端必然存在一种特殊结构——端粒。已知染色体端粒的作用至少有2:a.保护染色体末端免受损伤,使染色体保持稳定;b. 与核纤层相连,使染色体得以定位。  弄清楚DNA复制过程之后,在20世纪

细胞化学基础端粒DNA序列

端粒DNA 序列(telomere DNA sequence,TEL)端粒的功能是与端粒酶结合,完成染色体末端复制。端粒酶以其自身的RNA 为模板,在染色体端部添加上端粒的重复序列。作为模板的RNA 比较短,含有1.5 个端粒重复单元。端粒结构还能防止染色体融合及降解。端粒是保护DNA分子中的基因的

端粒DNA-序列的基本信息

端粒DNA 序列(telomere DNA sequence,TEL)端粒的功能是与端粒酶结合,完成染色体末端复制。端粒酶以其自身的RNA 为模板,在染色体端部添加上端粒的重复序列。作为模板的RNA 比较短,含有1.5 个端粒重复单元。端粒结构还能防止染色体融合及降解。 端粒是保护DNA分子中的基因

端粒DNA主要功能介绍

端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。端粒DNA主要功能有:第一,保护染色体不被核酸酶降解;第二,防止染色体相互融合;

关于端粒DNA的基本信息介绍

  端粒DNA,包括非特异性DNA和由高度重复序列组成的特异DNA序列,通常是由富含鸟嘌呤核苷酸(G)的短的串联重复序列组成,伸展到染色体的3'端。人工合成四膜虫端粒的重复DNA片段(TTGGGG)4端。人和小鼠的端粒DNA重序列为TTGGG,人类端粒的长度约为15Kb碱基。由于dsDNA存

DNA的端粒长度可以有效预测癌症风险

  匹兹堡大学癌症研究所(UPCI)的科学家在美国华盛顿特区的AACR年会上报道,保护染色体末端的DNA端粒长度可以预测癌症的风险并成为未来治疗的潜在靶标。  皮特和新加坡科学家率先研究的研究表明,超过预期的端粒由重复的DNA序列组成,每次细胞分裂时都会缩短---与癌症风险增加相关。  持有阿诺德·

研究阐释人类端粒DNA合成关键分子机制

近日,中国科学院大连化学物理研究所分子模拟与设计研究组研究员李国辉团队与上海交通大学医学院精准医学研究院教授雷鸣、武健团队等合作,在人类端粒DNA合成关键分子机制研究方面取得新进展。  端粒是位于真核生物染色体末端的DNA-蛋白复合体,用于保护染色体在细胞分裂过程中的完整性。端粒的DNA会随着细胞的

揭示人类端粒DNA合成关键分子机制

  近日,大连化物所所分子模拟与设计研究组(1106组)李国辉研究员团队与上海交通大学医学院精准医学研究院雷鸣教授、武健教授团队合作,在揭示人类端粒DNA合成关键分子机制研究方面取得新进展。  端粒是位于真核生物染色体末端的DNA—蛋白复合体,用于保护染色体在细胞分裂过程中的完整性。端粒的DNA会随

DNA片段能预知寿命:端粒长度决定生物寿命

  西班牙、英国研究人员最近发现,提取血液中的细胞,测试细胞中端粒的长度,可推断一个人的寿命有多长。这种检测方法将于2011年年底在英国上市,由此引来争议与关注  端粒长度  决定生物寿命  西班牙马德里国立癌症研究中心的玛莉亚・比拉斯科博士是这项商业端粒检测方法的发明者,她说这是一种非常简单、快捷

我所揭示人类端粒DNA合成关键分子机制

近日,我所分子模拟与设计研究组(1106组)李国辉研究员团队与上海交通大学医学院精准医学研究院雷鸣教授、武健教授团队合作,在揭示人类端粒DNA合成关键分子机制研究方面取得新进展。  端粒是位于真核生物染色体末端的DNA—蛋白复合体,用于保护染色体在细胞分裂过程中的完整性。端粒的DNA会随着细胞的每次

什么是端粒?端粒的结构特征

端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。端粒的长度反映细胞复制史及复制潜能,被称作细胞寿命

EMBO:新研究发现p53可保护端粒促进DNA修复

  谈到与癌症有关的基因,没有哪个基因能比p53更为大家所熟知。p53作为一个肿瘤抑制因子是细胞内一个重要的守卫,有研究证实超过一半的人类癌症都存在p53基因突变,这表明对于许多癌细胞来说,想要生长和传播就必须要抑制p53的作用。  最近来自Wistar研究所的科学家们发现p53能够抑制端粒部位积累

端粒的概念

端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。

什么是端粒?

端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。端粒的长度反映细胞复制史及复制潜能,被称作细胞寿命

端粒的结构解析

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。构成端粒

端粒的结构解析

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。构成端粒

端粒的结构解析

  端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。  

端粒的结构组成

端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。端粒DNA主要功能有:第一,保护染色体不被核酸酶降解;第二,防止染色体相互融合;

端粒的结构解析

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。构成端粒

关于端粒的组成

  端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。  端粒DNA主要功能有:  第一,保护染色体不被核酸酶降解;  第二,防止

端粒的研究应用

  端粒长度的维持是细胞持续分裂的前提条件 [1] 。在旺盛分裂或需要保持分裂潜能的细胞,如生殖细胞,干细胞和大多数癌细胞(~85%)中,端粒酶(Telomerase)被激活,它在端粒末端添加端粒序列,保证这些细胞中端粒长度的稳定,维持细胞的持续分裂能力。  细胞中有端粒酶的存在并不能保证端粒的延伸

端粒的功能简介

  稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5'末端在消除RNA引物后造成的空缺。  组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。  细胞分裂次数越多,其端粒磨损越多,细胞寿命越短。

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或骨髓功能衰竭。”来

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  短端粒相关疾病  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或

生化与细胞所研究发现端粒酶保护端粒的机制

  端粒是位于真核生物线性染色体末端的由DNA和蛋白质组成的复合物结构,它对于基因组的完整性以及染色体的稳定性发挥着至关重要的作用,端粒DNA长度以及其结构的维持与细胞衰老和癌症发生密切相关。在有端粒酶活性的细胞中,端粒酶途径是端粒DNA长度维持的主要机制;当端粒酶缺失时,细胞也可以通

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或骨髓功能衰竭。”来

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或骨髓功能衰竭。”来

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  短端粒相关疾病  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或