Antpedia LOGO WIKI资讯

智能液晶高分子薄膜会变色、有记忆、能自愈

前主流的变色材料主要由无机分子或者可变色的染料分子构成。天津大学封伟教授团队用高分子制备出一种厚度只有200微米,具有变色、记忆和自愈合功能的智能变色液晶高分子薄膜,这种薄膜在多个领域展现出应用前景。新买的包包可以随意变换颜色,不小心刮破的衣服能像皮肤一样愈合……这些似乎只在科幻电影里出现过的场景,如今已逐渐成为现实。日前,天津大学封伟教授团队成功研发了一种新型智能材料——智能变色液晶高分子薄膜(以下简称薄膜)。这种新材料不仅能变色,还有形状记忆和自愈合功能。相关研究被选为封面文章刊发在国际期刊《德国应用化学》上。通过液晶分子周期排列实现材料变色在神奇的自然界中,许多生物经过亿万年的自然选择和进化,逐渐演变出自适应变色伪装能力,以便能随时躲避天敌。比如变色龙就能够通过主动控制细胞层内部的纳米晶体排列结构,根据周围环境实现自身颜色的变化,达到与背景颜色匹配的目的。研究发现,变色龙处于平静状态时,其细胞层内部的纳米晶体的排列是紧密的......阅读全文

智能液晶高分子薄膜会变色、有记忆、能自愈

前主流的变色材料主要由无机分子或者可变色的染料分子构成。天津大学封伟教授团队用高分子制备出一种厚度只有200微米,具有变色、记忆和自愈合功能的智能变色液晶高分子薄膜,这种薄膜在多个领域展现出应用前景。新买的包包可以随意变换颜色,不小心刮破的衣服能像皮肤一样愈合……这些似乎只在科幻电影里出现过的场景,

材料领域:智能变色薄膜

目前热致变色技术广泛应用于防伪、保密、智能显示等领域,与其它变色技术相比热致变色具有显著优势:不像电致变色对变色涂层有导电性要求;不像光致变色要么依赖观察视角被动变色(可见光致变色)、要么需要特殊光源激励(紫外、红外光致变色),而且在一种光源下只显示一种对象,变色单一;也不像水致变色需要湿润;更不像

新型拉致变色薄膜 像变色龙般改变颜色

  耶鲁大学学者发现,在不改变材料化学组成的情况下,只改变材料微小晶体的晶格可以使材料颜色发生改变。以此研究人员研制出拉致变色薄膜,可用于变色传感器。  材料学家经常会从大自然中寻求灵感,但是发明赶上生物学的发现通常会花费一段时间。就在这周早些时候,瑞典科学家揭露:变色龙是通过扩

美国成功发明出可变色薄膜材料

  未来,我们不再需要费力地查找食品包装上的“保质期”或“最佳食用日期”。我们只需快速扫一眼,就能看出食物是否新鲜还是已经变质。   这种采用光子凝胶制成的新型模内标签,会在遇到不新鲜的食物所释放出的化学物质时变色。因此,标签的颜色能提示食品是否变质。   这种薄膜由莱斯大学

电致变色氢键有机框架薄膜研究新进展

  电致变色材料被广泛应用于智能窗户、信息存储和防眩晕后视镜等领域。研究较多的电致变色材料主要有金属氧化物、紫精类化合物、共轭聚合物等。目前,尚无氢键有机框架化合物(HOFs)应用于电致变色的研究报道。然而,HOFs应用于该领域具有独特优势:HOFs材料无需引入额外的基团(如引入官能团进行配位、聚合

仿生智能薄膜:让惰性高分子“动起来”

  这种薄膜可以持久运动,如果利用持久运动特性来发电,可极大拓展相关技术在自发电穿戴式、植入式电子器件方面的应用,而穿戴式、植入式行业拥有超千亿元市场规模。  花瓣形状的双层薄膜吸收丙酮分子后,花瓣翩翩起舞,犹如一朵在风中摇弋的萝卜花。“这是聚偏氟乙烯/聚乙烯醇双层膜的仿生形变。”中国科学院深圳先进

高分子薄膜缓释技术或成为疫苗接种新方法

  据麻省理工学院新闻网1月28日报道,该校研究人员日前开发出一种类似于膏药的疫苗,这种疫苗通过高分子薄膜的方式输送药物,可提高DNA疫苗的有效性。相关论文1月27日发表在《自然·材料学》杂志网络版上。   疫苗通常由灭活病毒制成,通过刺激人体免疫系统的方式,帮助免疫系统建立屏障阻止病毒感染。然而

高分子薄膜去润湿诱导有序图案构筑取得系列成果

  有序图案构筑与响应功能是材料科学、信息科学和生命科学等多学科交叉的新方向。高分子微纳图案化不仅能够满足微加工技术发展趋势的要求,而且具有突出优势,因此被认为是未来发展不依赖于传统刻蚀技术的微加工技术的新方向。高分子薄膜去润湿诱导有序图案构筑是一种“自下而上”制备大面积图案的有效方法。  中国科学

科学家解释变色龙变色机制

对于豹纹变色龙来说,从庄重的绿色变成光鲜的嫩黄或亮红色只需要两分钟。如今,针对其皮肤开展的试验揭示了它们是如何做到的。这是一种没有人能预料到的方式。 科学家一直推断,变色龙通过使不同颜色在它们的皮肤中流动来改变其外表,但这种爬行动物实际上拥有一种更聪明的方法。它们迅速

高分子薄膜太阳能电池研究进展报告会

  2月24日,中科院长春应用化学研究所高分子科学前沿报告会第十九讲举行。本场报告会由谢志元研究员主讲“高分子薄膜太阳能电池研究进展”。   当前,以有机半导体材料为核心的光电子技术已成为国际热点研究课题和重要发展方向。光电子技术在彩色平板显示、照明以及光伏电池等领域均有广