Antpedia LOGO WIKI资讯

膜片钳技术的基本介绍

1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的或多个的离子通道分子活动的技术。它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究带来了巨大的前进动力。 膜片钳技术是用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆以上的阻抗使之封接,使与电极尖开口处相接的细胞膜的小区域(膜片)与其周围在电学上分隔,在此基础上固定点位,对此膜片上的离子通道的离子电流(pA级)进行监测记录的方法 用场效应管运算放大器构成的I-V转换器是测量回路的核心部分。在场效应管运算放大器的正负输入端子为等电位,向正输入端子施加指令电位时,由于短路负端子以及膜片都可等电位地达到钳制的目的,当膜片微电极尖端与默片之间形成10GΩ以上封接时,其间的分流电流达到最小,横跨膜片的电流可100......阅读全文

膜片钳技术的基本介绍

  1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的或多个的离子通道分子活动的技术。它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究

关于膜片钳的基本内容介绍

  膜片钳又称单通道电流记录技术,用特制的玻璃微吸管吸附于细胞表面,使之形成10~100的密封(giga-seal),又称巨阻封接,被孤立的小膜片面积为μm量级,内中仅有少数离子通道。然后对该膜片实行电压钳位,可测量单个离子通道开放产生的pA(10的负12次方安培)量级的电流,这种通道开放是一种随机

关于膜片钳技术的应用介绍

  (1)与药物作用有关的心肌离子通道  心肌细胞通过各种离子通道对膜电位和动作电位稳态的维持而保持正常的功能。近年来,国外学者在人类心肌细胞离子通道特性的研究中取得了许多进展,使得心肌药理学实验由动物细胞模型向人心肌细胞成为可能。  (2)对离子通道生理与病理情况下作用机制的研究  通过对各种生理

膜片钳技术的应用学科相关介绍

  膜片钳技术发展至今,已经成为现代细胞电生理的常规方法,它不仅可以作为基础生物医学研究的工具,而且直接或间接为临床医学研究服务,  目前膜片钳技术广泛应用于神经(脑)科学、心血管科学、药理学、细胞生物学、病理生理学、中医药学、植物细胞生理学、运动生理等多学科领域研究。  随着全自动膜片钳技术(Au

电生理专题——膜片钳技术基本原理与特点

  膜片钳技术本质上也属于电压钳范畴,两者的区别关键在于:①膜电位固定的方法不同;②电位固定的细胞膜面积不同,进而所研究的离子通道数目不同。电压钳技术主要是通过保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流情况。因此只能用来研究整个细胞膜或一大块细胞膜上所有离子通道活动。目前

膜片钳技术的技术原理简介

  膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代

膜片钳技术原理

可兴奋膜的电学模型      细胞膜由脂类双分子层和和蛋白质构成。脂质层的电导很低,由于双分子层的结构特点,形成了细胞的膜电容,通道蛋白的开闭状况主要决定了膜电导的数值。在细胞膜的电学模型中,膜电容和膜电导构成了一个并联回路。在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线

膜片钳技术简介

  膜片钳技术被称为研究离子通道的“金标准”。是研究离子通道的最重要的技术。目前膜片钳技术已从常规膜片钳技术(Conventional patch clamp technique)发展到全自动膜片钳技术(Automated patch clamp technique)。  传统膜片钳技术每次只能记录

膜片钳的发展历史的介绍

  1980年Sigworth等在记录电极内施加5-50 cmH2O的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。  1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技

膜片钳技术的操作步骤

  (1)膜片微电极的制作  拉制  膜片微电极是将玻璃毛细管用拉管仪拉制而成。  涂硅酮树酯  将硅酮树酯涂于微电极的最尖端以外的部分,然后将其通过加热镍铬电阻线圈而烘干变固。  热刨光  在显微镜下,将微电极尖端接近热源进行热刨光处理可提高巨阻抗封接的成功率。  充灌微电极液  用于灌充微电极的