x射线的危害与保护措施

——当X射线曝光时,工作人员应该站在控制板后面。 ——当病人需要扶或抱着时,工作人员要戴上铅桾和铅手套。 ——非放射室人员不得随便进入X光室,如果需要其他,人员在场当X射线曝光时,让他们也站在控制台后面。 ——当进行放射线操作时,可能会被X射线伤害,可戴上能测定照射量的遗光胶片,并定期检查遮光胶片 。 ——只有接到医生或有资格的医务人员的X光拍片申请单,才拍照X光照片。 X射线是可以引起伤害的。X射线是看不见、感觉不到的射线当你处于X射线射束之中时,也不会马上有感觉。常处于X光机周的操作者或反复被X射线检查的患者,对其健康会产生持久性的伤害,还应该记住,不仅X射线的直接射束能引起伤害,散在的X射线也有伤害性。 当你进行X射线曝光时,X光管附近的任何地方都不安全,只有控制板的后面是安全的除病人之外,不允许其他任何人进入X光室,如果患者需要搀扶或病儿需要抱着进行X射线照射时,病儿的父母或扶病人的亲友,也必须穿戴铅裙,......阅读全文

x射线的危害与保护措施

  ——当X射线曝光时,工作人员应该站在控制板后面。  ——当病人需要扶或抱着时,工作人员要戴上铅桾和铅手套。  ——非放射室人员不得随便进入X光室,如果需要其他,人员在场当X射线曝光时,让他们也站在控制台后面。  ——当进行放射线操作时,可能会被X射线伤害,可戴上能测定照射量的遗光胶片,并定期检查

x射线的危害与保护措施

  ——当X射线曝光时,工作人员应该站在控制板后面。  ——当病人需要扶或抱着时,工作人员要戴上铅桾和铅手套。  ——非放射室人员不得随便进入X光室,如果需要其他,人员在场当X射线曝光时,让他们也站在控制台后面。  ——当进行放射线操作时,可能会被X射线伤害,可戴上能测定照射量的遗光胶片,并定期检查

X射线的危害有哪些

  电离辐射对人体的损伤非常广泛,而且难以预测[9]。射线对机体的影响,由于受多种因素的影响所引起的临床反应亦多种多样。射线对人体的损伤显现在受照者本身时称躯体(本体)效应。如影响到受照者后代则称遗传效应。按对受照者损伤的范围不同又可分全身效应(如急、慢性放射病).单一组织的效应(如皮肤损伤、眼晶体

X射线对人体的影响及危害

X射线对人体的影响及危害*节辐射损伤的概述辐射损伤是一定量的电离辐射作用于机体后,受照机体所引起的病理反应。急性放射损伤是由于一次或短时间内受大剂量照射所致,主要发生于事故性照射。在慢性小剂量连续照射的情况下,值得重视的是慢性放射损伤,主要由于X线职业人员平日不注意防护,较长时间接受超允许剂量所引起

X射线与γ射线的相关介绍

  X射线是带电粒子与物质交互作用产生的高能光量子。  X射线与γ射线有许多类似的特性,但它们起源不同。  X射线由原子外部引起,而γ射线由原子内部引起。X射线比γ射线能量低,因此穿透力小于γ射线。成千上万台X射线机在日常中被运用于医学和工业上。X射线也被用于癌症治疗中破坏癌变细胞,由于它的广泛运用

软X射线源上X射线能谱与X射线能量的测量

本文介绍了国内首次利用针孔透射光栅谱仪对金属等离子体Z箍缩X射线源能谱的测量结果及数据处理方法。同时用量热计对该源的单脉冲X射线能量进行了测量并讨论了其结果。

X射线测厚仪与γ射线测厚仪比较

 X射线测厚仪与γ射线测厚仪比较  (1)物理特性  X射线束能缩减为很小的一点,其结构几何形状不受限制,而γ射线则不能做到,因此光子强度会急骤减少以致噪音大幅度增加。  (2)信号/噪音比  X射线测厚仪:X射线的高光子输出,能带来比γ射线在相同时间常数下约好10倍的噪音系数。  (3)反应时间 

β射线的危害

  β射线是一种带电荷的、高速运行、从核素放射性衰变中释放出的粒子。人类受到来源于人造或自然界(氚,C-14等)β射线的照射,β射线比α射线更具有穿透力,但在穿过同样距离,其引起的损伤更小。一些β射线能穿透皮肤,引起放射性伤害。但是它一旦进入体内引起的危害更大。β粒子能被体外衣服消减、阻挡或一张几毫

3分钟了解连续X射线与特征X射线

  连续X射线,是电子跑着跑着突然被原子核拉住,能量没地儿放,于是放出X射线,这里放出的能量是连续的;而特征X射线是处于特定能级的电子吸收光子,处于激发态,跑到低能级上放出的能量,故是一份一份的,具有明显衍射峰。还有个是X射线荧光,这个是用X射线激发,电子放出光子,与特征X射线刚好是反的

x荧光光谱仪发出的x射线对人体有危害吗

x射线荧光分析仪目前主要有两种,一种是能量色散型,一种是波长色散型。第一:能量色散型的x射线有低功率x射线管或者放射源产生,现在一般不会有什么问题的,特别是x光管产生x射线的,不会有问题,但是用放射源的要注意防护第二:波长色散x荧光光谱仪,特别是现在几千瓦的仪器,在安装、维修中要注意点,平时使用中不

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

x射线荧光和x射线衍射的区别在于前者是对材料进行成份分析的仪器,而后者则主要是对材料进行微观结构分析以便确定其物理性状的设备。

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

特征x射线与荧光x射线的产生机理有何异同

产生的机理不同,特征X射线是由电子撞击金属靶,使金属原子中的K层L层M层等等层的核外电子被激发形成空位,外层电子跃入该空位,多余的能量产生X射线,荧光X射线则是由X射线或其他电磁波照射原子使原子核外电子激发形成空位,外层电子跃入空位产生X射线,二者都可以表示元素种类,但是产生一个是由电子引起,一个是

X射线衍射仪与X射线荧光光谱仪的区别

X射线衍射仪(XRD)是矿物学研究领域内的主要仪器,用于对结晶物质的定性和定量分析。X射线荧光光谱仪(XRF)是通过测定二次荧光的能量来分辨元素的,可做定量或定性分析。两种仪器构造与使用对象不同,XRD要复杂,XRF通常比较小。

X射线衍射仪与X射线荧光光谱仪的区别

x射线荧光和x射线衍射的区别在于前者是对材料进行成份分析的仪器,而后者则主要是对材料进行微观结构分析以便确定其物理性状的设备。

最新X射线分析著作《多晶X射线衍射技术与应用》出版

  书号:978-7-122-19145-8   出版日期:2014年7月   定价:88元   开本:16   当当网链接:http://product.dangdang.com/23491711.html  多晶衍射技术是对晶态物质的组成、结构和存在情况进行分析测试的重要方法,已广泛应用

X射线管中X射线的产生原理

实验室中X射线由X射线管产生,X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料).用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出.

X射线能谱测量与模拟

1895年,德国科学家伦琴发现了X射线,开辟了一个崭新的、广阔的物理研究领域。其中,针对电子打靶产生的韧致辐射X射线的研究,是X射线研究领域的一个重要课题。本文在国内外针对X射线能谱测量与解析的基础上,利用高纯锗(HPGe)探测器使用直接测量法与间接测量法对钨靶X射线与钼靶X射线能谱进行了测量。工作

x射线荧光分析仪的辐射对人体危害大吗

X射线荧光分析仪目前主要有两种,一种是能量色散型,一种是波长色散型。第一:能量色散型的X射线有低功率X射线管或者放射源产生,现在一般不会有什么问题的,特别是X光管产生X射线的,不会有问题,但是用放射源的要注意防护第二:波长色散X荧光光谱仪,特别是现在几千瓦的仪器,在安装、维修中要注意点,平时使用中不

X射线荧光(XRF):理解特征X射线

  什么是XRF?   X射线荧光定义:由高能X射线或伽马射线轰击激发材料所发出次级(或荧光)X射线。这种现象广泛应用于元素分析。  XRF如何工作?   当高能光子(X射线或伽马射线)被原子吸收,内层电子被激发出来,变成“光电子”,形成空穴,原子处于激发态。外层电子向内层跃迁,发射出能量等于两级能

质子激发X射线荧光分析的X-射线谱

  在质子X 射线荧光分析中所测得的X 射线谱是由连续本底谱和特征X 射线谱合成的叠加谱。样品中一般含有多种元素,各元素都发射一组特征X 射线谱,能量相同或相近的谱峰叠加在一起,直观辨认谱峰相当困难,需要通过复杂的数学处理来分解X 射线谱。解谱包括本底的扣除、谱的平滑处理、找峰和定峰位、求峰的半高宽

X射线能谱法与X射线光谱法最小浓度检测极限的对比

自从1968年Fitzgerald等人把x射线能谱法[EDX]引用于电子光学仪器以来,不少专家就着手评价这两种系统的优劣了。Servant等人在普通扫描电镜[SEM]上加装束流调节器和防污染装置,用能谱仪[EDX]对浓度大于2(wt)%的二元合金。

X射线晶体衍射学的发现与历史

  1912 年在人类的科学史上是一个重要的年份、一个里程碑式的年份,因为德国科学家劳厄(Maxvon Laue, 1879-1960)在这一年发现了X 射线晶体衍射现象,并开创了X 射线衍射物理学的研究。紧接着,英国科学家小布拉格(William LawrenceBragg,1890-1971)在

X射线探伤机的规格与选择

携带式X射线探伤机 携带式X射线探伤机造船、石油、化工、机械、航天、交通和建筑等工业部门检查船体、管道、高压容器、锅炉、飞机、车辆和桥梁等材料、零部件加工焊接质量,以及各种轻金属、橡胶、陶瓷等加工件的质量。利用X射线透照摄影的方法,从X射线胶片上显示出材料加工成的零件和焊接的内部缺陷,以评定制品的质

元素含量与特征X射线强度的关系

  不同元素特征X射线能量各不相同,依此进行定性分析;再根据特征X射线强度大小,可进行定量分析。  可用函数关系式表示为:C=f(k1I1, k2I2, k3I3...) 式中:Kn(n=1,2,3…)表示第n号元素的待定系数In(n=1,2,3…)表示第n号元素释放的特征X射线强度。由此可知只要通