Antpedia LOGO WIKI资讯

聚乙二醇的生物医学领域应用

医用聚乙二醇又称聚环氧乙烷 (PEO)。由环氧乙烷开环聚合得到的线性聚醚。在生物医学领域主要用途如下: 1、隐形眼镜用液。利用聚乙二醇水溶液的粘度对剪切速率较敏感和细菌不易在聚乙二醇上生长。 2、合成润滑药。环氧乙烷与水的缩合聚合物。为配制水溶性药物的软膏基质,也可作为乙酰水杨酸、咖啡因、尼莫地平等难溶于水药物的溶媒,供注射液的配制。 3、药物缓释和固定化酶的载体。将聚乙二醇水溶液涂敷于药丸外层,可控制丸内药物在体内扩散,以提高药效。 4、医用高分子材料表面改性。利用含聚乙二醇的两亲性共聚物在医用高分子材料表面吸附、截留和接枝,可改善与血液接触的医用高分子材料的生物相容性。 5、制作烷醇避孕药膜。 6、制作亲水性抗凝血聚氨酯。 7、聚乙二醇4000为渗透型缓泻剂,在肠腔内可增加渗透压,吸收水分,使粪便软化、体积增加,促使肠蠕动而排便。 8、假牙固定剂。利用聚乙二醇无毒和成胶性,用作假牙固定剂的组分。 9、P......阅读全文

聚乙二醇的生物医学领域应用

  医用聚乙二醇又称聚环氧乙烷 (PEO)。由环氧乙烷开环聚合得到的线性聚醚。在生物医学领域主要用途如下:  1、隐形眼镜用液。利用聚乙二醇水溶液的粘度对剪切速率较敏感和细菌不易在聚乙二醇上生长。  2、合成润滑药。环氧乙烷与水的缩合聚合物。为配制水溶性药物的软膏基质,也可作为乙酰水杨酸、咖啡因、尼

质谱在生物医学领域的应用

1 新生儿疾病筛查质谱技术在该领域的发展已十分成熟。利用LC-MS 技术可同时筛查十几种新生儿疾病。质谱技术能做到筛查效率高、结果可靠,费用相对低廉,这是常用分析方法如细菌抑制法、放射免疫分析法、酶联免疫吸附试验、时间分辨荧光免疫分析法、荧光酶免疫分析法等不可企及的。以我国每年2200 万新生儿中有

水凝胶改性在生物医学领域的应用

  水凝胶的改性是水凝胶在多方面获得应用的前提条件。水凝胶通过改性在药物缓释、物质分离、器官移植、组织培养、酶的固定以及免疫分析等方面具有许多优异的性能,在生物医学领域具有诱人的应用前景。东南大学生物科学与医学工程学院郭振超等人对此做出了详细的分析,研究发表在汉斯《材料化学前沿》2014年4月的期刊

概述三氧化二铁在生物医学及其它领域的应用

  纳米氧化铁在药用胶囊、药物合成、生物医学技术等领域发挥着重要的作用。α-Fe2O3除了在磁性材料、颜料、催化领域、生物医学领域得到应用外,在其它领域中也有广泛的应用前景。例如,纳米级氧化铁对Cr(Ⅵ)具有较好的吸附作用,吸附效率高,吸附时间短,而且可以回收并重复使用,对于处理环境污水中的Cr(Ⅵ

最新综述:光遗传学在生物医学领域中应用

  核心刊物”栏目期刊:科学通报,中国科学C辑:生命科学,均是由中国科学院和国家自然科学基金委员会共同主办的,我国学术期刊中的知名品牌,被国内外各主要检索系统收录,如国内的《中国科学论文与引文数据库》(CSTPCD)、《中国科学引文数据库》(CSCD)等;美国的SCI、CA、EI,英国的SA,日本的

微流控的应用场景:以生物医学分析为热点的全领域应用

微流控芯片作为一种“微全分析技术平台”可以应用于各个分析领域,如生化医疗诊断、食品和商品检验、环境监测、刑事科学、军事科学和航天科学等重要应用领域,其中生物医学分析是热点。目前来看,体外诊断是微流控技术的最大的应用场景,而在体外诊断中,微流控技术应用的重点在于化学发光(免疫诊断)和分子诊断中。

生物医学应用前景

微流控技术从材料、设计到下游应用的各种进步,都将在本次微流体会议上一一讨论,尤其是微流控材料、设计、控制相关的新技术、策略和方法,以及微流控技术在生物研究/生物医学领域的应用。从新材料的开发,到计量精度和液体处理控制的改善,微流控技术正循序渐进地飞速发展着。此外,液滴、数字化、离心式和声学微流控技术

聚乙二醇的其他方面的应用

  用作分析试剂,也用于制药工业  用于软化剂、润滑剂等  在医药、化妆品中作基质,在橡胶、金属加工、农药等工业中作分散剂、润滑剂、乳化剂等  有机合成的介质、日用化妆品工业用保湿剂、无机盐增溶剂、粘度调节剂等  用作絮凝剂、流体减摩剂、纺织型浸润剂、助留助滤剂、黏结剂、增稠剂以及假牙固定剂等  用

中俄将在生物医学领域开展合作

  俄罗斯基础研究基金会信息分析部部长亚历山大·沙罗夫向俄罗斯卫星通讯社表示,俄罗斯基础研究基金会与中国国家自然科学基金委员会将加强在生物医学领域的合作研究。   他说,中国国家自然科学基金委员会是俄罗斯基础研究基金会最主要的合作伙伴,目前双方正在实施的联合项目超过100个。中方对医学领域的联合研究

我国学者在二维MXene生物医学应用领域取得系列重要进展

  近期,中国科学院上海硅酸盐研究所陈雨研究员和施剑林研究员带领的研究团队(介孔与低维纳米材料课题组)开展了二维MXene的多种类可控合成以及针对肿瘤诊疗的生物医学应用的系统研究工作,这些工作涉及MXene本身的酶催化降解、MXene的体内外细胞吞噬行为、对多区近红外光的响应、高效的光热肿瘤治疗、诊