Antpedia LOGO WIKI资讯

高性能锂离子电池,GaZnON纳米颗粒提升转换效率

近日,广州大学教授王家海团队联合香港科技大学教授邵敏华,在高性能锂离子电池研究方面取得新进展。相关研究发表于《纳米能源》。 据介绍,近年来,便携式电子设备的推广及高度集成化、小型化的发展趋势,对可充电锂离子电池性能的要求越来越高。对锂离子电池而言,负极材料是影响电池整体性能的重要因素。作为传统商用锂电池负极的石墨材料,其较低的比容量阻碍了锂离子电池的进一步发展。因此,寻找具有高比容量和优异循环及倍率性能的新型负极材料对于开发下一代高性能锂离子电池至关重要。作为一种典型的四元固溶体材料,(Ga1-xZnx)(N1-xOx)(GaZnON)具有稳定的六方纤锌矿结构。电负性较小的N原子的引入,使得Zn 3d和N 2p轨道之间存在相互作用,从而在不改变导带底位置的情况下,降低价带顶的位置,提高电子转移效率。此外,更稳定的化学性质也有利于GaZnON在恶劣的电化学反应环境中使用。但是,传统固相氨化反应会导致GaZnON颗粒形态和组分的......阅读全文

苏州纳米所锂硫电池研发取得进展

  随着社会和科技的发展,人类对电化学储能技术的需求日益增大,研究人员都在寻找具有更高比能量的下一代二次电池。锂硫电池以硫为正极活性物质,基于硫与锂之间的可逆电化学反应来实现能量储存和释放,其理论比能量可达2600 Wh/kg,是目前锂离子电池的3-5倍,有望被应用于动力电池、便携式电子产品等领域。

苏州纳米所锂硫电池研究取得新进展

  随着社会和科技的发展,人类对电化学储能技术的需求日益增大,研究人员都在寻找具有更高比能量的下一代二次电池。锂硫电池以硫为正极活性物质,基于硫与锂之间的可逆电化学反应来实现能量储存和释放,其理论质量比能量可达到2600 Wh/kg,是目前锂离子电池的3至5倍,有望被应用于动力电池、便携式电子产品等

苏州纳米所高性能锂二次电池研究获进展

  随着电动汽车和移动电子产品的发展,社会对能源存储与转化提出更高要求,继锂离子电池之后,可充电电池的高能量密度、高倍率充放电、高循环稳定性成为需求。锂硫电池凭借其高能量密度(2600 Whkg-1)、经济环保等优势成为下一代储能体系的候选者。然而,如单质硫与硫化锂的不导电性、多硫化锂中间产物的穿梭

锂子电池电控单元

  锂子电池是由1980年Armand提出的想法,该电池主要由能量储存,电路和电控单元组成的系统,具有电压高,功率高,寿命长等优点,而且也无污染,所以被广泛使用在电子和环保行业。   大部分人对于电控单元都不太了解,其实很简单,单体电池中的安全装置包括泄压阀,电流遮断装置,电流限制装置,二极

铌基异质结构纳米片解决了锂硫电池存在的问题

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室二维材料化学与能源应用研究组研究员吴忠帅团队设计并制备出一种氮化铌-氧化铌异质结构纳米片,可同时作为锂硫电池的正极与负极载体,有效抑制了多硫化物的穿梭效应和金属锂负极枝晶的生长,应用该异质结构的锂硫电池在贫电解液、低负正极容量比、高硫载量条

电池储电站,不能没有“锂”

  7月18日,我国首个10万千瓦级电池储能电站在江苏镇江正式并网投入运营,开启了我国大型电池储能电站商业化运行的新阶段。   而据美国麻省理工学院《技术评论》杂志最新的报道,尽管锂离子电池的成本在过去十年里急剧下降,但仍然太高,不足以覆盖更长的使用时间,使可再生能源成为电网的主要能源。   

电池储电站,不能没有“锂”

  虽然锂电池储电站的成本比铅酸电池高出一倍,但这并不是抛弃锂电池的理由。不同应用场合对储能功率和容量要求不同,各种储能技术都有其适宜的应用领域。 7月18日,我国首个10万千瓦级电池储能电站在江苏镇江正式并网投入运营,开启了我国大型电池储能电站商业化运行的新阶段。 而据美国麻省理

铌基异质结构纳米片并用于贫电解液锂硫电池

  近日,我所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队,设计并制备出一种氮化铌-氧化铌异质结构纳米片,可同时作为锂硫电池的正极与负极载体,有效地抑制了多硫化物的穿梭效应和金属锂负极枝晶的生长,应用该异质结构的锂硫电池在贫电解液、低负正极容量比、高硫载量条件下,展

新型铌基异质结构纳米片用于贫电解液锂硫电池

近日,中国科学院大连化学物理研究所研究员吴忠帅团队,设计并制备出一种氮化铌—氧化铌异质结构纳米片,可同时作为锂硫电池的正极与负极载体,有效抑制了多硫化物的穿梭效应和金属锂负极枝晶的生长,应用该异质结构的锂硫电池在贫电解液、低负正极容量比、高硫载量条件下,展示出优异电化学性能。相关研究成果发表于《先进

纳米电池

纳米电池为满足这一迫切需求,研究人员花了大量的心思在纳米尺度提升电池性能。Science杂志和知社学术圈上周就大幅度报道斯坦福大学崔屹教授的纳米电池,称其可能改变世界。这一尺度是如此的精细,小到几个原子、几个分子的细微运动,就可能改变一切。可是,我们怎么样才能在纳米尺度,探测原子、分子如此细微的变化