Antpedia LOGO WIKI资讯

宁波材料所联合《中国机械工程》刊发新专辑

日前,中国科学院宁波材料所海洋新材料与应用技术重点实验室与《中国机械工程》编辑部联合策划了“极端环境表面工程”专辑,以及时总结极端环境材料损伤与防护的最新研究成果。该专辑邀请了薛群基、侯保荣、宫声凯等领域内的20位院士、专家学者组成编委会。 “极端环境表面工程”专辑封面与封底。(图片来源:中科院宁波材料所) 在海洋强国、航空航天、资源开发等重大工程的实施过程中,极端环境是机械装备不可避免的使役环境。近年来,针对机械装备和关键部件表面多因素强耦合损伤的防护需求,国内众多高校、科研机构和企业在极端环境表面工程的共性科学问题、海洋极端环境表面工程、航空航天极端环境表面工程、极端环境摩擦学等方面开展了卓有成效的研究。 宁波材料所研究员王立平牵头组织并为该专辑撰写序言,介绍了以深空、深海、深地、极地为代表的极端环境典型特征,回顾了我国极端环境与表面工程研究领域的发展历程,指出了我国在上述研究领域尚存在的短板和不足,并号召更多科技......阅读全文

柴春雷访问宁波材料所

    参观宁波材料所  11月6日,浙江大学现代工业技术研究所副所长柴春雷一行到中科院宁波材料技术与工程研究所考察交流。宁波材料所副所长王蔚国热情接待了客人,所长助理李润伟主持了座谈交流会。  李润伟首先对柴春雷一行表示欢迎,同时表达了对潘云鹤院士促成此次交流的感谢。科技发展部主任

宁波市镇海区调研宁波材料所

  2013年1月18日,宁波市镇海区区长魏祖民调研中科院宁波材料技术与工程研究所调研,并与部分科研人员举行了座谈。宁波材料所科技委主任薛群基院士、所长崔平、副所长王蔚国等参加了座谈会。   在崔平、王蔚国等领导的陪同下,魏祖民参观了精密运动与先进机器人实验室、激光与智能能量场实验室

江绵恒视察宁波材料所

  5月15日下午,中科院副院长、上海分院院长江绵恒视察宁波材料所。  江绵恒一行先后参观材料所的特纤事业部、磁性材料事业部,先进制造所的智能测控仿实验室、直线电机实验室、复合材料制造技术实验室,新能源所的固态氧化物燃料电池事业部,并参观了部分科研成果的展示。每到一处,江绵恒仔细看,

宁波市市长毛光烈调研宁波材料所

  7月12日下午,宁波市委副书记、市长毛光烈,市委常委、副市长余红艺、市政府秘书长王仁洲等到中科院宁波材料技术与工程研究所调研。  毛光烈一行先后参观宁波材料所特种纤维事业部、磁性材料事业部、燃料电池事业部、高分子与复合材料事业部的有关实验室,以及所先进制造所智能测控、直线电机实验

宁波材料所黄庆研究员做客固体所“核材料论坛”

   5月31日,中科院宁波材料所黄庆研究员做客固体所“核材料论坛”,作了题为“先进核能关键结构材料的研发”的报告,并与固体所科技人员和青年学生进行了深层次交流。报告会由刘长松研究员主持。   黄庆研究员在报告中阐述了MAX相结构陶瓷材料。它是具有六方晶格结构的纳米层状三元化合物,

宁波材料所LED用稀土发光材料研究获进展

  LED固态照明器件具有高效、节能、环保等优点,经过十多年发展已基本取代传统白炽灯、荧光灯而成为新一代照明光源。荧光粉具有波长转换功能,在决定LED白光性能如显色指数、色温、效率等方面起着重要作用,是LED照明器件的关键材料之一,研发效率高和热稳定性较好的荧光粉一直是人们追求的目标。 图1

宁波材料所复合材料绿色回收研究获进展

  热固性树脂及其复合材料是一类综合性能优异的材料,广泛应用于航天、航空、工业、民用等领域。但是由于热固性树脂固化之后形成不溶不熔的三维网状交联结构,使其处理和再循环利用非常困难。近年来,随着我国大飞机、新能源、轨道交通等新兴行业的发展,热固性树脂基复合材料的应用领域不断拓展,其回收

宁波材料所LED用稀土发光材料研究获进展

  LED固态照明器件具有高效、节能、环保等优点,经过十多年发展已基本取代传统白炽灯、荧光灯而成为新一代照明光源。荧光粉具有波长转换功能,在决定LED白光性能如显色指数、色温、效率等方面起着重要作用,是LED照明器件的关键材料之一,研发效率高和热稳定性较好的荧光粉一直是人们追求的目标。  中国科学院

宁波材料所热电材料性能调控研究取得系列进展

  热电转换材料能够实现热能与电能直接相互转换,在航空航天特殊电源/热流管理、余热/废热发电和便携制冷等领域有着重要应用。热电性能由无量纲优值(ZT=S2σ T/κ)来表征,高转换效率需要尽可能提高材料的功率因子S2σ 以及尽可能降低热导率κ。近期,围绕SnSe和SnTe等几类环境友好的新型热电材料

宁波材料所纳米硅基负极材料研究取得进展

  相对于传统石墨负极材料(372mAh/g),硅负极材料具有极高的理论比容量(3580mAh/g),是未来高能量密度动力锂离子电池负极材料首选。但硅负极材料在充放电循环过程中存在体积变化(高达3倍以上),造成硅颗粒粉化,从而引发SEI膜反复再生库伦效率低,电接触变差极化增大,使实际硅负极材料循环寿