Antpedia LOGO WIKI资讯

β受体阻断剂的相关介绍

β受体阻滞剂是能选择性地与β肾上腺素受体结合、从而拮抗神经递质和儿茶酚胺对β受体的激动作用的一种药物类型。肾上腺素受体分布于大部分交感神经节后纤维所支配的效应器细胞膜上,其受体分为3 种类型,可激动引起心率和心肌收缩力增加、支气管扩张、血管舒张、内脏平滑肌松弛等和脂肪分解。这些效应均可被β受体阻滞剂所阻断和拮抗。......阅读全文

β受体阻断剂的相关介绍

  β受体阻滞剂是能选择性地与β肾上腺素受体结合、从而拮抗神经递质和儿茶酚胺对β受体的激动作用的一种药物类型。肾上腺素受体分布于大部分交感神经节后纤维所支配的效应器细胞膜上,其受体分为3 种类型,可激动引起心率和心肌收缩力增加、支气管扩张、血管舒张、内脏平滑肌松弛等和脂肪分解。这些效应均可被β受体阻

β受体阻断剂的主要分类介绍

  肾上腺素受体分布于大部分交感神经节后纤维所支配的效应器细胞膜上,其受体分为 3 种类型, 即β1受体、β2受体和β3受体。β1受体主要分布于心肌, 可激动引起心率和心肌收缩力增加;β2受体存在于支气管和血管平滑肌, 可激动引起支气管扩张、血管舒张、内脏平滑肌松弛等;β3受体主要存在于脂肪细胞上,

β受体阻断剂的不良反应介绍

  β 受体阻滞剂大剂量应用可发生一些严重不良反应:  ①心血管系统:可减慢心率, 甚至造成严重心动过缓和房室传导阻滞, 主要见于窦房结和房室结功能业已受损的患者;  ②代谢系统:1 型糖尿病患者应用非选择性β 受体阻滞剂可掩盖低血糖的一些警觉症状如震颤、心动过速;  ③呼吸系统:可导致气道阻力增加

简述β受体阻断剂的作用机制

  β 受体阻滞剂具有心血管保护效应, 主要机制是对抗儿茶酚胺类肾上腺素能递质毒性, 尤其是通过β1受体介导的心脏毒性作用。其他机制还有抗高血压、抗心肌缺血、通过抑制肾素释放而发挥一定的阻断肾素血管紧张素醛固酮系统作用、改善心脏功能和增加左心室射血分数、抗心律失常等。

β受体阻断剂在高血压中的应用

  β 受体阻滞剂通过拮抗交感神经系统的过度激活而发挥降压作用, 主要的降压机制涉及降低心排血量,改善压力感受器的血压调整节功能, 以及抑制肾素血管紧张素醛固酮系统;还通过降低交感神经张力而预防儿茶酚胺的心脏毒性作用。  β 受体阻滞剂是高血压患者初始和长期应用的降压药物之一, 可单独或与其他降压药

β受体阻断剂在冠心病中的应用

  β 受体阻滞剂有益于各种类型的冠心病患者。一是通过降低心肌收缩力、心率和血压, 使心肌耗氧量减少;同时延长心脏舒张期而增加冠脉及其侧支的血供和灌注, 从而减少和缓解日常活动或运动状态的心肌缺血发作, 提高生活质量。二是可缩小梗死范围, 减少致命性心律失常, 降低包括心脏性猝死在内的急性期病死率和

β受体阻断剂在心力衰竭中的应用

  β 受体阻滞剂通过有效拮抗交感神经系统、肾素血管紧张素醛固酮系统和过度激活的神经体液因子,在心血管疾病的恶性循环链中起到重要阻断作用, 从而延缓或逆转心肌重构, 发挥改善内源性心肌功能的“生物学效应” 。  β 受体阻滞剂在心律失常中的应用β 受体阻滞剂是唯一能降低心脏性猝死而降低总死亡率的抗心

细胞膜受体的激素受体的相关介绍

  激素与受体结合后如何产生生物效应?20世纪60年代提出的第二信使假设认为,作为第一信使的激素分子与细胞膜受体结合后并不进入细胞。结合激素的受体能使位于膜上的腺苷酸环化酶活化,从而使ATP转成环(化)腺苷酸(cAMP),后者称为第二信使,它能引发细胞内一系列生化反应而产生最终生物效应。例如,肾上腺

细胞膜受体的相关介绍

  细胞膜受体也是镶嵌在膜脂质双分子层中的膜蛋白质。受体蛋白质一般由两个亚单位组成:裸露于细胞膜外表面的部分叫调节亚单位,即一般所说的受体,它能“识别”环境中的特异化学物质(如激素、神经递质、抗原、药物等)并与之结合;裸露于细胞内表面的部份叫催化亚单位,常见的是无活性的腺苷酸环化酶(AC)。一般将能

β受体阻断剂不增加心衰患者再入院率

  最新研究显示,对于那些因急性呼吸困难入院且伴有心衰与射血分数降低(HFrEF)的老年医保患者而言,出院时接受β受体阻断剂治疗患者的30-天再入院率并不高于那些没有使用该药物的患者。对文章进行了编译整理。     此外,正如我们所料,这些服用β受体阻断剂的患者不仅长期4年生存状况更好,而且他们