Antpedia LOGO WIKI资讯

简述锂电材料质子交换膜膜材料的改进及应用

质子交换膜燃料电池具有工作温度低、启动快、比功率高、结构简单、操作方便等优点,被公认为电动汽车、固定发电站等的首选能源。在燃料电池内部,质子交换膜为质子的迁移和输送提供通道,使得质子经过膜从阳极到达阴极,与外电路的电子转移构成回路,向外界提供电流,因此质子交换膜的性能对燃料电池的性能起着非常重要的作用,它的好坏直接影响电池的使用寿命。 迄今最常用的质子交换膜(PEMFC)仍然是美国杜邦公司的Nafion®膜,具有质子电导率高和化学稳定性好的优点,目前PEMFC大多采用Nafion®等全氟磺酸膜,国内装配PEMFC所用的PEM主要依靠进口。但Nafion®类膜仍存在下述缺点: (1)制作困难、成本高,全氟物质的合成和磺化都非常困难,而且在成膜过程中的水解、磺化容易使聚合物变性、降解,使得成膜困难,导致成本较高; (2)对温度和含水量要求高,Nafion®系列......阅读全文

简述锂电材料质子交换膜膜材料的改进及应用

  质子交换膜燃料电池具有工作温度低、启动快、比功率高、结构简单、操作方便等优点,被公认为电动汽车、固定发电站等的首选能源。在燃料电池内部,质子交换膜为质子的迁移和输送提供通道,使得质子经过膜从阳极到达阴极,与外电路的电子转移构成回路,向外界提供电流,因此质子交换膜的性能对燃料电池的性能起着非常重要

简述锂电材料质子交换膜的分类

  1、固定式长寿命电源  在最长使用寿命范围内提供的功率密度最大,现已证明它可连续使用10000小时以上,并不断改善设计,为固定式质子交换膜燃料电池产业的商业成功作出贡献。  2、便携式电源  使便携式燃料电池装置体积更小、功率更大,这些组件使燃料电池用干反应气体就能出色地进行工作,达到可满足最具

提高锂电材料质子交换膜膜材料性能的方法

  (1)有机/无机纳米复合质子交换膜,依靠纳米颗粒尺寸小和比表面积大的特点提高复合膜的保水能力,从而达到扩大质子交换膜燃料电池工作温度范围的目的;  (2)对质子交换膜的骨架材料进行改进,针对目前最常用的Nafion®;膜的缺点,或在Nafion®;膜基础上改进,或另选用新型骨架材料;

关于锂电材料质子交换膜的介绍

  质子交换膜(Proton Exchange Membrane,PEM)是质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)的核心部件,对电池性能起着关键作用。它不仅具有阻隔作用,还具有传导质子的作用。全质子交换膜主要用氟磺酸型质子交换膜;naf

关于锂电材料质子交换膜的性质介绍

  质子交换膜燃料电池已成为汽油内燃机动力最具竞争力的洁净取代动力源.用作PEM的材料应该满足以下条件:  (1) 良好的质子电导率;  (2) 水分子在膜中的电渗透作用小;  (3)气体在膜中的渗透性尽可能小;  (4)电化学稳定性好;  (5)干湿转换性能好;  (6)具有一定的机械强度;  (

质子交换膜燃料电池低铂电极材料研究获新进展

   近日,中科院大连化物所邵志刚研究员燃料电池系统与工程研究团队设计制备了开管式PtCo合金纳米管阵列,并应用于质子交换膜燃料电池膜电极,相关研究成果发表在英国纳米能源Nano Energy上。  质子交换膜燃料电池具有比能量高、启动速度快、转换效率高、环境友好等优点,是新能源技术的研究热点。膜电

大连化物所质子交换膜燃料电池低铂电极材料研究获进展

  近日,中国科学院大连化学物理研究所燃料电池系统与工程研究组研究员邵志刚团队设计制备了开管式PtCo合金纳米管阵列,并将其应用于质子交换膜燃料电池膜电极,相关研究成果发表在《纳米能源》(Nano Energy,DOI:10.1016/j.nanoen.2017.02.038)上。  质子交换膜燃料

质子交换膜实现可控制备

  近日,依托北京航空航天大学建设的仿生能源材料与器件北京市重点实验室研制出综合性能优异的质子交换膜材料,并成功应用于燃料电池测试。  质子交换膜是燃料电池的关键部件,其质子传输效率和稳定性是电池效能和使用寿命的重要影响因素,占电池总成本的1/3。目前燃料电池用质子交换膜主要由国外掌握。该重点实验室

有机/无机纳米复合质子交换膜的简介

  2003年12月4日公开的Columbian化学公司世界专利揭示了一种磺酸导体聚合物接枝碳材料。其制作工艺为将含杂原子的导体聚合物单体在碳材料中氧化聚合,并磺化接枝,该方法也可进一步金属化聚合物接枝的碳材料。含碳材料可以是炭黑、石墨、纳米碳或fullerenes等。聚合物为聚苯胺、聚吡咯等。其质

简述锂电池负极材料纳米材料的应用范围

  1、 天然纳米材料  海龟在美国佛罗里达州的海边产卵,但出生后的幼小海龟为了寻找食物,却要游到英国附近的海域,才能得以生存和长大。最后,长大的海龟还要再回到佛罗里达州的海边产卵。如此来回约需5~6年,为什么海龟能够进行几万千米的长途跋涉呢?它们依靠的是头部内的纳米磁性材料,为它们准确无误地导航。