放射性元素半衰期的相关介绍

放射性同位素衰变的快慢有一定的规律。例如,氡-222经过α衰变为钋-218,如果隔一段时间测量一次氡的数量级就会发现,每过3.8天就有一半的氡发生衰变。也就是说,经过第一个3.8天,剩下一半的氡,经过第二个3.8天,剩有1/4的氡;再经过3.8天,剩有1/8的氡。因此,我们可以用半衰期来表示放射性元素衰变的快慢。放射性元素的原子核有半数发生衰变所需的时间,叫做这种元素的半衰期。不同的放射性元素,半衰期不同,甚至差别非常大。例如,氡-222衰变为钋-218的时间为3.8天,镭-226衰变为氡-222的时间为1620年,铀-238衰变为钍-234的半衰期竟长达45亿年。衰变是微观世界里原子核的行为,而微观世界规律的特征之一在于“单个的微观世界是不可预测的”,即对于一个特定的氡原子,我们只知道它发生衰变的概率,而不知道它将何时发生衰变。一个特定的氡核可能在下1s就衰变,也可能在10min内发生衰变,也可能在200万年之后再衰变。然......阅读全文

放射性元素半衰期的相关介绍

  放射性同位素衰变的快慢有一定的规律。例如,氡-222经过α衰变为钋-218,如果隔一段时间测量一次氡的数量级就会发现,每过3.8天就有一半的氡发生衰变。也就是说,经过第一个3.8天,剩下一半的氡,经过第二个3.8天,剩有1/4的氡;再经过3.8天,剩有1/8的氡。因此,我们可以用半衰期来表示放射

放射性元素的半衰期

半衰期处于某一特定能态的放射性原子核的数目或活度衰减到原来大小的一半所需的时间,通常用符号T┩表示。平均寿命指处于某一特定能态的放射性原子核平均生存的时间。利用指数衰减规律,容易得到半衰期T┩同衰变常数λ或平均寿命τ的关系如下 各种放射性核素的半衰期在极大的范围变化,一般说来,核素偏离β稳定线越远(

关于血浆半衰期的测定介绍

  为了达到比较准确的血药浓度监测,一般会在五分钟和半小时时取血,这样更能反映出药物血浆半衰期的时间间隔。分别取耳缘静脉血和心包腔血是为了更多的测定,以达到一个平均值,减少误差,增高实验的准确性。影响血浆半衰期的因素比较多,有血浆蛋白结合率,患者的体质、年龄,药物的特点,疾病对人体功能的影响,人体内

放射性元素的用途介绍

医学X光检查癌症治疗工业核能发电探测焊接点和金属铸件的裂缝工业生产线上的自动品质控制系统量度电镀薄膜的厚度消除静电农业知道肥料的吸收及流失灭虫考古鉴定古物所属的年代(放射性定年法)教育及其他大气核试爆电视机视象显示器夜光手表烟火感应器萤光指示牌避雷针

放射性元素的应用介绍

放射性同位素技术已广泛应用于国民经济的许多领域,在工业、农业、医学、资源环境、军事科研诸多领域的应用已获得了显著的经济效益、社会效益、环境效益,也是核能利用的重要方面之一。 示踪原子将一种稳定的化学元素和它的具有放射性的同位素混合在一起,当它们参与各种系统的运动和变化时,由于放射性同位素能发出射线,

放射性元素的衰变类型介绍

根据放射性元素释放或吸收的粒子或射线,可将放射性衰变划分为以下几个类型:(1)α衰变:放射性元素自发地释放出α粒子的衰变过程叫α 衰变。α粒子质量数为4,由2个质子和2个中子组成,是原子序数为2的高速运动的氦原子。高速运动着的α 粒子流就是α 射线。经过α衰变形成的放射性元素与其母体相比质量数减4,

生物半衰期的概念

生物半衰期亦称“生物半排出期”,是指某个生物系统中的某种特定的放射性核素的排出速率近似地服从指数规律时,生物过程使该核素在系统中的总量减少到一半时所需的时间。生物半衰期也可以指体内药量或血药浓度下降一半所需的时间,又称消除半衰期。

简述血浆半衰期的性质

  血浆药物浓度降低一半所需的时间。如未加说明即指消除半衰期。大多数药物是按一级动力学规律消除(即在单位时间内消除恒定比例的药物),这些药物有其各自相对固定的半衰期数值,不因血浆浓度高低而改变。另一些药物剂量过大超过机体最大消除能力时可以零级动力学规律消除(在单位时间内消除恒定量药物),此时血浆半衰

放射性元素对人体的危害介绍

在大剂量的照射下,放射性对人体和动物存在着某种损害作用。如在400rad【拉德(辐射吸收)】的照射下,受照射的人有5%死亡;若照射650rad,则人100%死亡。照射剂量在150rad以下,死亡率为零,但并非无损害作用,往往需经20年以后,一些症状才会表现出来。放射性也能损伤剂量单位遗传物质,主要在

关于放射性元素的基本信息介绍

  放射性元素(确切地说应为放射性核素)是能够自发地从不稳定的原子核内部放出粒子或射线(如α射线、β射线、γ射线等),同时释放出能量,最终衰变形成稳定的元素而停止放射的元素。这种性质称为放射性,这一过程叫做放射性衰变。含有放射性元素(如U、Th、Ra等)的矿物叫做放射性矿物。

放射性元素作为示踪原子的应用介绍

将一种稳定的化学元素和它的具有放射性的同位素混合在一起,当它们参与各种系统的运动和变化时,由于放射性同位素能发出射线,测量这些射线便可确定其位置与数量。只要测出了放射性同位素的分布和动向,就能确定稳定化学元素的各种作用。这种方法称为示踪原子方法,应用很广泛。 (1)在石油工业上的应用。将含放射性γ

生物半衰期的应用与影响

1、肝癌(Hepatocellular Carcinoma,HCc)是全世界最常见的恶性肿瘤之一,每年有近500,000的新发病人,我国是HCC高发地区,每年有近100万人死于肝癌,占全世界肝癌死亡总数的42%。目前部分肝切除在许多肝病中心仍是首选治疗方法,但由于病人多数合并有肝硬化,肝脏功能不良、

放射性元素的衰变的规律

放射性元素最基本的特征是不断发生同位素衰变,而衰变的结果是放射性同位素母体的数目不断减少,但其子体的原子数目将不断增加。由于放射性同位素的衰变不受外界温度、压力或化学条件控制,其衰变速率的大小完全是每种放射性元素的固有特性,发生衰变的原子数目仅与时间有关如果起始时刻放射性元素母体的数目为N,经过一段

放射性元素的衰变规律

放射性元素最基本的特征是不断发生同位素衰变,而衰变的结果是放射性同位素母体的数目不断减少,但其子体的原子数目将不断增加。由于放射性同位素的衰变不受外界温度、压力或化学条件控制,其衰变速率的大小完全是每种放射性元素的固有特性,发生衰变的原子数目仅与时间有关如果起始时刻放射性元素母体的数目为N,经过一段

关于放射性元素的原子核的衰变介绍

  原子核放出α粒子或β粒子,由于核电荷数变了,它在周期表中的位置就变了,变成另一种原子核。我们把这种变化称之为原子核的衰变。铀-238放出一个α粒子后,核的质量数减少4,电荷数减少2,称为新核。这个新核就是钍-234核。这种衰变叫做α衰变。这个过程可以用下面的衰变方程表示:23892U→23490

影响药物血浆半衰期的因素有哪些

半衰期(t1/2)是指血药浓度下降一半所需的时间。一般而言半衰期指的是消除半衰期或血浆半衰期,即在消除相血药浓度下降一半所需的时间。 不同的病人服用等剂量的某一药物,不一定达到相等的血药浓度;即使达到相等的血药浓度,也不一定有等同的药效。在一个病人尚未出现药效,而在另一个病人可能已出现毒性反应,这种

影响生物半衰期的因素有哪些?

生物半衰期的测定,是一个很复杂的问题,因为影响生物半衰期的因素很多。据现有文献表明,生物对污染物或药物的摄入量,污染物或药物在生物体内的原有水平,污染物经代谢作用的消除速度,生物体内其它物质的存在状况以及生物个体的发育阶段,药物结构性质等等,对生物半衰期均会产生不同程度的影响,且污染物在生物体内的消

放射性元素的防护措施

1.放射性同位素与射线装置使用场所必须设置防护设施。其入口处必须设置放射性标志和必要的防护安全连锁、报警装置或工作信号。 2.单位必须设专人对放射源和射线装置进行管理,定期检查、维修并做书面记录。放射源和仪器、设备发生故障时,应由专人处理。  3.放射性同位素与射线装置的使用单位必须严格按照安全操作

影响药物血浆半衰期的因素有哪些

半衰期(t1/2)是指血药浓度下降一半所需的时间。一般而言半衰期指的是消除半衰期或血浆半衰期,即在消除相血药浓度下降一半所需的时间。 不同的病人服用等剂量的某一药物,不一定达到相等的血药浓度;即使达到相等的血药浓度,也不一定有等同的药效。在一个病人尚未出现药效,而在另一个病人可能已出现毒性反应,这种

影响药物血浆半衰期的因素有哪些

半衰期(t1/2)是指血药浓度下降一半所需的时间。一般而言半衰期指的是消除半衰期或血浆半衰期,即在消除相血药浓度下降一半所需的时间。 不同的病人服用等剂量的某一药物,不一定达到相等的血药浓度;即使达到相等的血药浓度,也不一定有等同的药效。在一个病人尚未出现药效,而在另一个病人可能已出现毒性反应,这种

放射性元素的活度

活度处于某一特定能态的放射性核在单位时间的衰变数-dN/dt,记作A。由指数衰减规律可以看到,A=-dN/dt=λN。放射性活度的国际单位是贝可勒尔(Bq),它定义为每秒一次衰变,与以往放射性活度的常用单位居里(Ci)的关系是 1Ci=3.7×10(10)Bq。放射性源的放射性活度同其质量之比,称为

放射性元素的衰变规律

放射性原子核的衰变是一个统计过程,所以放射性原子的数目在衰变时是按指数规律随时间的增加而减少的,称为指数衰减规律 。其中No是衰变时间t=0时的放射性核的数目,N是t时刻的放射性核的数目,λ是衰变常数,表示放射性物质随时间衰减快慢的程度。对确定核态的放射性核素,λ是常数,它也表示单位时间该种原子核的

影响药物血浆半衰期的因素有哪些

半衰期(t1/2)是指血药浓度下降一半所需的时间。一般而言半衰期指的是消除半衰期或血浆半衰期,即在消除相血药浓度下降一半所需的时间。 不同的病人服用等剂量的某一药物,不一定达到相等的血药浓度;即使达到相等的血药浓度,也不一定有等同的药效。在一个病人尚未出现药效,而在另一个病人可能已出现毒性反应,这种

特定小RNA半衰期可迅速转换

神经细胞小RNA半衰期可迅速转换  小核糖核酸(miRNAs,又称小RNA)通常被认为具有很长的半衰期。然而,瑞士科学家日前发现,在小鼠的视网膜中,为了响应黑暗与光亮的影响,特定miRNA的水平能够迅速作出改变——这应该归因于高速的衰减与转录。此外,他们指出,高转变率可能是许多神经细

什么是放射性元素?

放射性是指元素从不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成稳定的元素而停止放射(衰变产物),这种现象称为放射性。衰变时放出的能量称为衰变能量。原子序数在83(铋)或以上的元素都具有放射性,但某些原子序数小于83的元素(如锝)也具有放射性。

放射性元素如何伤人

放射性元素对人的伤害有这些放射性对人体的危害:大剂量的照射下, 放射性对人体和动物存在着某种损害作用。 如在400rad的照射下,受照射的人有5%死亡; 若照射650rad,则人100%死亡。 照射剂量在150rad以下,死亡率为零,但并非无损害作用, 住往需经20年以后,一些症状才会表现出来。 放

放射性元素有哪些

放射性元素是具有放射性的元素的统称。指锝、钷和钋,以及元素周期表中钋以后的所有元素。该类元素的所有同位素都具有放射性,因此命名。天然元素指最初是从天然产物中发现的放射性元素。它们是钋、氡、钫、镭、锕、钍、镤和铀。

放射性元素有哪些

元素周期表中所有放射性元素的名称为以下几种:1、天然放射性元素是指那些最初是从自然界发现而不是用人工方法合成的放射性元素。它们是:钋 Po、氡 Rn、钫Fr、镭Ra、锕Ac、钍Th、镤Pa、铀U、镎Np、钚Pu。2、人工放射性元素最初通过人工核反应合成而被鉴定的放射性元素。它们是:锝、钷、镅、锔、锫

概述放射性同位素的衰变规律

  放射性元素最基本的特征是不断发生同位素衰变,而衰变的结果是放射性同位素母体的数目不断减少,但其子体的原子数目将不断增加。由于放射性同位素的衰变不受外界温度、压力或化学条件控制,其衰变速率的大小完全是每种放射性元素的固有特性,发生衰变的原子数目仅与时间有关如果起始时刻放射性元素母体的数目为N,经过

放射性元素的发现和研究

天然存在的某些物质所具有的能自发地放射出α射线或β射线或γ射线的性质,称为天然放射性。放射性物品 标志1896年,法国物理学家贝克勒尔在研究铀盐的实验中,首先发现了铀原子核的天然放射性。在进一步研究中,他发现铀盐所放出的这种射线能使空气电离,也可以穿透黑纸使照相底片感光。他还发现,外界压强和温度等因