Antpedia LOGO WIKI资讯

类器官的类别及应用

自2009年成功建立上皮类器官以来,类器官培养已应用于各种器官,包括:大脑(brain)、视杯(Optic Cup)、内耳(Inner Ear)、肺(lung)、肝(liver)、结肠(Colon)、肾(Kidney)、胰腺(Pancreatic)、前列腺(Prostate)、胃(Gastroids)、乳腺(galactophore)等。类器官及应用Jay Gopalakrishnan 的团队成功地在大脑类器官中诱导出双边对称的视杯,并发现这种结构可以感知光,同时向其他区域的大脑发送信号。当这些类器官生长50-60天后,原来的“眼睛”发育成一两个成熟的可见视泡结构,称为视泡脑类器官(OVB-organoids)。这项研究首先在功能上将视网膜结构整合到大脑类器官中,在体外系统中再现神经纤维从视网膜神经节向外延伸以连接大脑的目标区域。该系统可以帮助研究胚胎发育过程中的“脑-眼”相互作用,为视网膜疾病的探索和治疗提供有力的工具,为无数......阅读全文

类器官的类别及应用

自2009年成功建立上皮类器官以来,类器官培养已应用于各种器官,包括:大脑(brain)、视杯(Optic Cup)、内耳(Inner Ear)、肺(lung)、肝(liver)、结肠(Colon)、肾(Kidney)、胰腺(Pancreatic)、前列腺(Prostate)、胃(Gastroids

类器官常用小分子及应用文献汇总

小分子(small molecules)是指分子量小于1000道尔顿(尤其小于400道尔顿),并具有生物学功能的化合物。此类化合物与细胞因子和蛋白不同,其可直接穿过细胞膜进入细胞,进而发挥相应的功能,适用于各种属的细胞。小分子化合物的作用靶点众多,已广泛应用于干细胞,类器官,免疫学,神经生物

类器官(organoids):器官芯片技术培育人胰岛类器官

  近日,中国科学院大连化学物理研究所研究员秦建华团队利用器官芯片技术培育人多能干细胞衍生的胰岛类器官取得新进展,相关成果发表在器官芯片领域刊物Lab on a chip上,并被选为封面文章。  类器官(organoids)是一种通过干细胞自组织方式形成的多细胞三维复杂结构,它能够在体外模拟具有来源

类器官芯片在肿瘤研究中的应用

在过去几十年中,干细胞生物学的进展导致在体外创造了一类新的3D细胞样细胞,称为类器官,因为它们的空间形态与原始器官相似。利用该技术从体外培养的肿瘤组织中形成的肿瘤类有机物在很大程度上保留了肿瘤细胞在体内的生物学特性,具有成本低、操作简单等优点,弥补了传统肿瘤实验模型的缺陷。1、肿瘤发生发展机制肿瘤是

类器官芯片在医学研究中的应用介绍

类器官是体外诱导多能干细胞发育后含有至少一种细胞类型的器官复合体模型。在适当的空间限制下,具有相似粘附特性的干细胞将迁移到特定位置并自我组织分化,从而形成与体内靶器官相似的结构和功能特性。与2D细胞和动物模型相比,类有机物是具有细胞复杂性的生物体,更接近体内细胞的生长状态和功能结构,在模拟人体各器官

类器官的发展历程

1907年,Henry Van 发现物理分离的海绵细胞可以重现聚集,自行组成一个新的功能完善的海绵。在接下来的几十年里,脊椎动物中也发现了相似的细胞分离再聚合现象,例如1944年Holtfreter的两栖动物肾组织实验和1960年Weiss的禽类胚胎实验。1961年 Piercehe和 Verney

什么是类器官?

类器官属于三维(3D)细胞培养物,包含其代表器官的一些关键特性。此类体外培养系统包括一个自我更新干细胞群,可分化为多个器官器官特异性的细胞类型,与对应的器官拥有类似的空间组织并能够重现对应器官的部分功能,从而提供一个高度生理相关系统。

什么是类器官?

类器官和真正的器官非常相似,从专业角度阐释,类器官是体外的3维立体微型细胞簇,高度模拟体内相应器官的结构和功能。通俗来讲就是类器官是一个体外构成的具有自我更新,自我组织能力的微型器官,与真实的器官具有相似的空间组织并且能够执行原始器官功能。

一文快速解读类器官技术及分析仪器应用

  当代生物医学研究领域发展迅猛,类器官技术的出现为生物医学研究提供了新的思路和方法。类器官技术是一种生物医学技术,旨在构建和培育人工合成的类似于真实器官的三维结构。类器官是由细胞、生物材料和生物因子等组成的人工合成结构,具有类似于真实器官的形态、功能和生理特性。类器官技术可以应用于疾病模拟、药物筛

Molecular Devices高内涵应用系列手册-类器官应用手册

一、从2D到3D,从3D到类器官正如上一期3D细胞应用手册的内容,3D细胞培养模型以其能够促进细胞分化水平和组织形成,已经在生物科研领域受到了广泛关注,这些在传统的2D细胞培养系统下是不可能实现的。包括用于治疗研究的各种传统模型都很好地复制了肿瘤的组织复杂性与遗传异质性。Respective fea

类器官培养方法的比较

类器官的来源广泛,样本材料经过不同方法处理后需要在体外进行培养,构建3D培养模型。不同细胞外基质可采用的培养方法也会存在差异,但都可以为类器官体外培养提供生长的微环境。其中VitroGel水凝胶为无动物源成分的功能性水凝胶,室温下与细胞培养基或含离子成分的溶液混合即可成胶,类器官培养方法多样;而目前

类器官的构建与制备

类器官的形成:类器官可以由两种类型细胞产生,一是多能干细胞(PSCs),例如胚胎干细胞(ESCs)、诱导干细胞(iPSCs),或器官限制性成体干细胞(ASCs)。这些细胞被培养在一个特定的环境中,允许它们遵循根深蒂固的基因指令,自x行组织成功能性的3D结构。从各种组织中培养类器官的方法是相似的。干细

类器官的作用和前景

目前类器官的培养主要是指上皮细胞类器官, 如消化道上皮细胞、乳腺上皮细胞、皮肤上皮细胞、肺泡上皮细胞等, 大部分的类器官中只有上皮细胞, 不含有成纤维细胞、免疫细胞、血管细胞等周围基质细胞. 这在很大程度上限制其在其他领域的应用, 如免疫防御的研究、干细胞微环境、肿瘤微环境调控方面的研究. 今后的研

类器官进展人鼠混合大脑类器官首次对视觉刺激做出反应

  随着干细胞技术的不断进步,源自人诱导多功能干细胞(human induced pluripotent stem cells, hiPSCs)的脑类器官已成为疾病模型中的热门话题。脑类器官有望为药物筛选、精准医学、神经修复等领域带来新的发展契机。  脑类器官的优势体现在下面两个方面:  -与二维细

类器官构建的三要素

细胞分化物理特征关键信号路径的激活/抑制原始细胞的类型及条件

类器官的三个特征

细胞能够通过空间组织和细胞特异化自行组织,重现原始器官功能;含有一种以上与原始器官相同的细胞;能够再现原始器官的某些功能,例如:过滤,排泄,神经链接以及收缩功能等。

小小类器官 承载移植梦

  经过近10年的快速发展,科学家们已经能在实验室利用细胞培育、分化、自组装成各种类似人体组织的3D结构,制造出肝脏、胰脏、胃、心脏、肾脏甚至乳腺等在内的各种类器官。英国著名学术期刊《发育》杂志3月刊以专版形式,对类器官研究领域进行了全面回顾。  《科学》杂志网站报道称,这些实验室类器官并不是各种细

研究创造新型人脑“类器官”

  人类神经系统疾病背后的遗传学是复杂的,大跨度的基因组参与了疾病的发生和发展。研究其他动物的神经疾病给相关发现提供了的机会很有限,因为人类的大脑非常独特。哈佛大学(Harvard University)和布罗德研究所(Broad Institute)斯坦利精神病学研究中心(Stanley Cent

人脑“类器官”研究获得突破

  近日,来自哈佛大学、南加州大学及麻省理工学院的科学家们在开发人脑类器官方面取得的重大进展。相关研究成果发表于Nature杂志,论文标题为“Individual brain organoids reproducibly form cell diversity of the human cerebr

类器官发育指标首次定义

  近日,德国和奥地利的联合科研团队首次定义了器官发育的指标,揭示了组织中三维结构的连通性和结构的出现之间的联系,将有助于科学家设计模仿人体器官的自组织组织。  人体器官具有复杂的充满液体的管路和环路网络。它们具有不同的形状,并且不同器官的三维结构彼此之间的连接也不同。这方面的一个例子是肾脏的分支网

从药物筛选到临床试验,类器官应用潜力巨大!

  热烈欢迎上海交通大学医学院附属瑞金医院于颖彦教授受邀担任大会主席参加即将于2023年5月19-20日召开的“2023(第三届) 3D细胞培养与类器官研讨会”,并分享“人胃肠上皮与肿瘤类器官的团体标准及其应用进展”主题报告。  2022年底,约瑟夫·拜登总统签署了一项引人注目的立法,针对于美国食品

比类器官还要高级的操作——类装配体

  【前沿技术】Nature最新揭露:比类器官还要高级的操作——类装配体  01研究背景  类器官大部分来源于能自我分化的干细胞,常形成三维细胞团,具有器官的部分特性,但是此类模型未考虑到天然的组织结构和微环境,而且大量的细胞从生理环境中取出都会改变其特性。  这篇研究中使用了正常膀胱干细胞或膀胱肿

储气罐的类别及应用介绍

  储气罐是指专门用来储存气体的设备,同时起稳定系统压力的作用,储气罐的作用是贮存一定数量的压缩空气;    消除压力波动,保证输出气流的连续性;调节用气量或以备发生故障和临时需要应急使用;    进一步分离压力空气中的水分和油分。    储气罐(压力容器)一般由筒体、封头、法兰、接管、密封元

类器官研究的未来发展趋势

虽然类器官技术在研究界的广泛应用依然处于起步阶段,但是作为一种工具,类器官技术在研究广泛的对象方面潜力巨大,包括发育生物学、疾病病理学、细胞生物学、再生机制、精准医疗以及药物毒性和药效试验。对于这些应用以及其他应用,类器官培养实现了对现有2D培养方法和动物模型系统的高信息量的互补。此外,通过类器官繁

PeproTech类器官培养操作的答疑解惑

类器官(organoids)是一种利用具有干性潜能的细胞体外培养出的3D细胞培养物。由于与对应的器官拥有高度相似的组织学特征,具有自我更新和自我组织能力,并能重现该器官的部分生理功能,因此类器官可作为多种疾病的体外模型,在干细胞与发育、再生医学、疾病研究、药物开发和精准医疗等多个方面拥有广泛的应用前

激光粒度仪应用及类别

激光粒度仪是专指通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器。广泛的应用在建材、化工、冶金、能源、食品、电子、地质、军工、航空航天、机械、高校、实验室,研究机构等行业。主要种类静态激光能谱是稳定的空间分布。主要适用于微米级颗粒的测试,经过改进也可将测量下限扩展到几十纳米。动态激光根

Cell:首个癌症类器官生物银行

  研究人员利用由癌症患者肿瘤衍生出的三维(3D)类器官,接近复制出了原发肿瘤的一些关键特性。这些“类器官”培养物适用于大规模的药物筛查来检测与药物敏感性相关的一些遗传改变,为采用个体化治疗改善癌症患者的临床结局铺平了道路。他们将这项研究发表在5月7日的《细胞》(Cell)杂志上。  直到现在,人们

Cell:首个癌症类器官生物银行

  研究人员利用由癌症患者肿瘤衍生出的三维(3D)类器官,接近复制出了原发肿瘤的一些关键特性。这些“类器官”培养物适用于大规模的药物筛查来检测与药物敏感性相关的一些遗传改变,为采用个体化治疗改善癌症患者的临床结局铺平了道路。他们将这项研究发表在5月7日的《细胞》(Cell)杂志上。  直到现在,人们