Antpedia LOGO WIKI资讯

关于萤光素酶的生物发光介绍

生物发光现象是在生物体内,由于生命过程的变化,化学反应将化学能转化为光能而发光的现象。生物发光在英语中名为bioluminescence,该词为合成词,是由希腊语中代表生命的bios与拉丁语中意为光的lumen组合而成。大部分发光与三磷酸腺苷(ATP)有关,发光的化学反应不限于在细胞内外发生。对于细菌,发光相关基因的表达被名为发光操纵子(Lux operon)的一种操纵子控制。有生物发光现象的物种在整个进化过程中独立出现过30次以上。 生物发光现象在海洋脊椎动物,无脊椎动物,微生物及陆生生物上都有发现。共生生物中也有发光生物的踪迹。......阅读全文

萤光素酶的应用介绍

萤光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。萤光素酶的基因可以被合成并插入到生物体中或转染到细胞中。研究者利用基因工程已经使得小鼠、家蚕、马铃薯等一些生物可以合成萤光素酶。间接体外成像是一种强大的研究手段,可以对整个动物体中的细胞群落进行分析:将不同类型的细胞(骨髓干细胞、T

萤光素酶的应用

萤光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。萤光素酶的基因可以被合成并插入到生物体中或转染到细胞中。研究者利用基因工程已经使得小鼠、家蚕、马铃薯等一些生物可以合成萤光素酶。间接体外成像是一种强大的研究手段,可以对整个动物体中的细胞群落进行分析:将不同类型的细胞(骨髓干细胞、T

NanoLuc™萤光素酶技术

  NanoLuc™萤光素酶是Promega公司推出一种新型的萤光素酶,它具有分子量更小(19.1kDa, 171个氨基酸),发光更亮,比任何现有的生物发光酶用途更加广泛的特点,它是目前性能最好的生物发光报告基因之一。NanoLuc™萤光素酶的这些属性为报告基因检测提供了新的功能,在需要更高灵敏

NanoLuc™萤光素酶技术

        NanoLuc™萤光素酶是Promega公司推出一种新型的萤光素酶,它具有分子量更小(19.1kDa, 171个氨基酸),发光更亮,比任何现有的生物发光酶用途更加广泛的特点,它是目前性能最好的生物发光报告基因之一。NanoLuc™萤光素酶的这些属性为报

D-萤光素 Protocol 在生物发光检测中的应用

D-萤光素,萤火虫萤光素酶的化学发光底物,广泛用于体外生物发光、体内活体成像。萤萤之光,照亮您的科研之路! ■ Q: D-萤光素的作用原理D-萤光素 (D-Luciferin) 是萤火虫萤光素酶 (Firefly Luciferase) 的化学发光底物。在ATP 和萤光素酶存在下,萤光素能够被氧化发

萤光素酶的生产反应

萤光生成反应通常分为以下两步:萤光素 +ATP→ 萤光素化腺苷酸(luciferyl adenylate) +PPi萤光素化腺苷酸 +O2→ 氧萤光素 +AMP+ 光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转化为光,剩余的能

萤光素酶的反应机制

萤光生成反应通常分为以下两步:萤光素 +ATP→ 萤光素化腺苷酸(luciferyl adenylate) +PPi萤光素化腺苷酸 +O2→ 氧萤光素 +AMP+ 光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转化为光,剩余的能

萤光素酶的基本信息

萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中最有代表性的是一种学名为Photinus pyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应的速

萤光素酶的基本信息

萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中最有代表性的是一种学名为Photinus pyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应的速

双萤光素酶报告基因检测

  萤光素酶报告基因系统广泛应用于真核生物基因表达和细胞生理学研究,包括受体活性、转录因子、细胞信号转导、mRNA加工和蛋白质折叠等。萤光素酶是理想的报告基因,因为哺乳动物细胞中不含内源性萤光素酶,一旦转录完成立刻就生成功能性的萤光素酶。单萤光素酶报告基因实验往往会受到各种实验条件的影响,而双萤光素