Antpedia LOGO WIKI资讯

碳纳米管膜形成超流体的过程介绍

于量子液体低于某临界转变温度会形成超流态。比如氦最丰富的同位素,氦-4,在低于 2.17 K(−270.98°C) 时便会变成超流体。氦-4形成超流态的相变称为Lambda相变(Lambda transition),因它的比热容对温度曲线形状如同希腊字母“λ”一样。凝聚态物理学中一些相近的相变亦因而叫作Lambda相变。氦较贫乏的另一种同位素,氦-3,在更低的 2.6 mK 成为超流体。这个温度只是比绝对零度高几个毫开尔文。虽然这两个系统的超流体表征很相似,但其本质却是南辕北辙。氦-4是玻色子,其超流性质可以用玻色-爱因斯坦统计解释。可是,氦-3是费米子,其超流性必须用到描述超导体的BCS理论之推广才可了解。其中,原子代替了电子形成库柏对(Cooper pair),而它们的吸引作用力调控机制由自旋波动 (Spin fluctuation) 代替了声子。详情请参看费米子凝聚态。超流体和超导体的统一理论可以以规范对称破缺(Gauge......阅读全文

碳纳米管膜形成超流体的过程介绍

于量子液体低于某临界转变温度会形成超流态。比如氦最丰富的同位素,氦-4,在低于 2.17 K(−270.98°C) 时便会变成超流体。氦-4形成超流态的相变称为Lambda相变(Lambda transition),因它的比热容对温度曲线形状如同希腊字母“λ”一样。凝聚态物理学中一些相近的相变亦因而

超流体的主要应用介绍

超流体其中一个重要的应用是稀释制冷机 (Dilution refrigerator)。超流氦-4已成功用作化学领域光谱分析技术的量子溶剂。在超流氦滴光谱分析 (SHeDS) 中,单个分子溶于超流介质之中,使之有有效的旋转自由度,如同在气态之中。这引起了对气体分子研究的极大兴趣。超流体亦用于高精度仪器

攻膜复合物的形成过程

  补体激活途径的末端途径中,C5b可与C6稳定结合为C5b6,后者自发与C7结合成C5b67,该复合物中的C7初步插入靶细胞膜脂质双分子层,继而C8于插入膜上的C5b67高亲和力结合,形成稳定的、深插入细胞膜的C5b678,该复合物可与12~18个C9分子结合为C5b6789n,此即攻膜复合体。

细菌生物被膜的形成过程原理

  一般认为生物被膜的形成过程分为4 步:条件膜的沉积;细菌的初始到达及吸附;生长繁殖;生物被膜形成。当无菌的医用植入器材(多为生物材料多聚物)植入体内之后, 其表面立即被唾液、血液、尿液及胃肠道内黏液等各种体液包围,各种糖蛋白、粘多糖、金属离子和其它成分会在数分钟内渗透并吸附到其表面, 形成条件膜

钟乳石形成过程介绍

  钟乳石由碳酸钙和其他矿物质的沉积形成。石灰石是一种 碳酸钙岩石,被含有二氧化碳的水分解后,生成碳酸氢钙溶液。这个反应的化学方程式为:[1]  CaCO₃(s) + H₂O(l) + CO₂(aq) → Ca(HCO₃)₂(aq)  水溶液顺岩石而下,直到抵达边缘。如果岩石在洞穴顶部,水将滴下。当

基于量子限域离子超流体的神经信号传输过程

  传统的Hodgkin-Huxley模型认为,神经信号传输是通过动作电位沿着神经元轴突进行传播,动作电位是由K+/Na+在Na/K泵的离子扩散产生的,而其余大部分Na/K泵是静止的。这种离子流体是熵驱动的无序流体,离子扩散过程需要消耗大量能量,类似于多米诺骨牌效应,传播速度相对较慢(~1 m/s)

超流体的研究和特性

当接近绝对零度时,部分液体会转变成另一种的液体状态名为超流体,它的特点是黏度值是零(有无限的流动性),超流动性是其最具特征的基本性质。科学家在1937年发现,将氦冷却到低于λ温度(2.17K)便形成超流体。此时,氦气可以在容器中不断流动,并可对抗地心吸力。氦-4为了找寻自己的定位会在容器上缓慢地流动

超流体的研究和特性

当接近绝对零度时,部分液体会转变成另一种的液体状态名为超流体,它的特点是黏度值是零(有无限的流动性),超流动性是其最具特征的基本性质。科学家在1937年发现,将氦冷却到低于λ温度(2.17K)便形成超流体。此时,氦气可以在容器中不断流动,并可对抗地心吸力。氦-4为了找寻自己的定位会在容器上缓慢地流动

关于牙菌斑的形成过程介绍

  牙菌斑,即“细菌社区”的建立、成熟需要经历三个阶段:  首先唾液中的营养物质吸附在牙齿表面,构成“社区”肥沃的“土壤”,即获得性薄膜形成。这个过程在刚清洁过的牙面上,数分钟内便可形成,1-2小时迅速增厚。  “土壤”形成之后,便可吸引细菌来定居,同时为细菌提供营养,即细菌粘附和共聚。首先会有先驱

关于细菌生物被膜的形成的介绍

  细菌生物被膜是指细菌粘附于固体或有机腔道表面,形成微菌落,并分泌细胞外多糖蛋白复合物将自身包裹其中而形成的膜状物。当细菌以生物被膜形式存在时耐药性明显增强(ro一1000倍),抗生素应用不能有效清除BF,还可诱导耐药性产生。渗透限制:生物被膜中的大量胞外多糖形成分子屏障和电荷屏障,可阻止或延缓抗

超流体的概念和典型物质

超流体是一种物质状态,特点是完全缺乏黏性。如果将超流体放置于环状的容器中,由于没有摩擦力,它可以永无止尽地流动。例如液态氦在2.17 K以下时,内摩擦系数变为零,液态氦可以流过半径为十的负五次方厘米的小孔或毛细管,这种现象叫做超流现象(Superfluidity),这种液体叫做超流体(Superfl

甲状腺素的形成过程介绍

  甲状腺激素的独特性在于其生物学活性需要微量元素碘。在世界上大部分地区碘是土壤中的稀有成分,因此食物中含碘稀少。生物在进化中形成了一种复杂的机制来获得和保有这种关键元素,并将其转化为适宜掺入有机成分的形式。同时,甲状腺必须合成甲状腺素,这种合成发生在甲状腺球蛋白。  甲状腺素的形成经过合成、贮存、

血清素的形成过程介绍

  色氨酸经色氨酸羟化酶催化首先生成5-羟色氨酸,再经5-羟色氨酸脱羧酶催化成5-羟色胺。  5-羟色胺最早是从血清中发现的,又名血清素,广泛存在于哺乳动物组织中,特别在大脑皮层质及神经突触内含量很高,它也是一种抑制性神经递质。在外周组织,5-羟色胺是一种强血管收缩剂和平滑肌收缩刺激剂。在体内,5-

5-羟色胺的形成过程介绍

  色氨酸经色氨酸羟化酶催化首先生成5-羟色氨酸,再经5-羟色氨酸脱羧酶催化成5-羟色胺。  5-羟色胺最早是从血清中发现的,又名血清素,广泛存在于哺乳动物组织中,特别在大脑皮层质及神经突触内含量很高,它也是一种抑制性神经递质。在外周组织,5-羟色胺是一种强血管收缩剂和平滑肌收缩刺激剂。在体内,5-

骨领形成的形成过程

软骨雏形形成后,在其中段周围的软骨膜内出现血管,由于营养及氧供应充分,软骨膜深层的骨祖细胞分裂并分化为成骨细胞,并在软骨表面产生类骨质,成骨细胞自身也被包埋其中而成为骨细胞。类骨质钙化为骨基质,于是形成一圈包绕软骨雏形中段的薄层骨松质,称骨领(bone collar)。骨领表面的软骨膜改称外膜。骨外

锂电池化成过程SEI膜形成中的主要化学现象

  在电池化成的过程中不仅仅是电能与化学能的转换,同时也伴随着热能的转化;在化成中的化学反应产生的气体包括H2,CO,CO2,C2H4,CH4,C2H6· · · ,所以在化成时电芯都有一个气囊,目的就是排出化成中产生的气体。   SEI膜形成的质量、稳定性、界面的优化是决定电池寿命不可忽视的重要因

生物膜的形成一般有哪几个过程

细菌形成生物被膜是一个动态的过程,主要可分为四个阶段:细菌可逆性粘附的定殖阶段、不可逆性粘附的集聚阶段、生物被膜的成熟阶段和细菌的脱落与再定植阶段。1、细菌可逆性粘附的定殖阶段当浮游细菌与惰性物体表面或活性实体的表面接触后,浮游细菌会粘附到物体表面,启动在物体表面形成生物被膜。在这个阶段,单个附着细

科学家追踪到催化剂的超快形成过程

  该模拟图显示了以铁原子为中心的分子被激光(左上)刺破。在几百飞秒内,即千万亿分之一秒内,一个乙醇分子(右下)同铁分子结合。供图:SLAC 美国国家加速器实验室  一支国际研究团队首次精确追踪了金属化合物最外层电子的再排布。  该研究成果发表于《自然》期刊,将有助于科学家们开发

溶酶体的形成过程

  初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:  内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别

溶酶体的形成过程

初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别溶酶体水

图式形成的过程

在动物胚胎发育中,最初的图式形成主要涉及胚轴(embryonic axes)形成及其一系列相关的细胞分化过程。胚轴指胚胎的前-后轴(anterior -posterior axes)和背–腹轴(dorsal -ventral axis)。胚轴的形成是在一系列基因的多层次、网络性调控下完成的。

特化的形成过程

生物的适应性变化区分成生物的进化和特化两种不同的概念。进化即生物逐渐演变,向前发展的过程;特化是指生物的水平发展的物种形成过程,即生物多样性的形成过程,这种区分可以避免许多不必要的争论,把这个新的概念体系和以往人们对生物进化研究的理论相结合。并用该方法重新解释以往人们的研究发现,可以看出生物发展的历

尿酸的形成过程

  核酸是一种高分子化合物,核酸是由无数的核苷酸组成。每一个核苷酸都由三部分组成,一个磷酸分子、一个戊糖(五碳糖)和一个碱基(嘌呤或嘧啶)。生物细胞核中的遗传物质DNA(脱氧核糖核酸)和细胞质中RNA(核糖核酸)由几十万、几百万甚至几千万个核苷酸组成。反过来当核酸氧化分解后的产物之一就是嘌呤,所以说

尿酸的形成过程

核酸是一种高分子化合物,核酸是由无数的核苷酸组成。每一个核苷酸都由三部分组成,一个磷酸分子、一个戊糖(五碳糖)和一个碱基(嘌呤或嘧啶)。生物细胞核中的遗传物质DNA(脱氧核糖核酸)和细胞质中RNA(核糖核酸)由几十万、几百万甚至几千万个核苷酸组成。反过来当核酸氧化分解后的产物之一就是嘌呤,所以说嘌呤

胆红素的形成过程

肝、脾、骨髓等单核吞噬细胞系统将衰老的和异常的红细胞吞噬,分解血红蛋白,生成和释放游离胆红素,这种胆红素是非结合性的(未与葡萄糖醛酸等结合)、脂溶性的,在水中溶解度很小,在血液中与血浆白蛋白结合。由于其结合很稳定,并且难溶于水,因此不能由肾脏排出。胆红素定性试验呈间接阳性反应。故称这种胆红素为未结合

溶酶体的形成过程

  初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:  内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别

血管的形成过程

内皮细胞参与新血管的形成,称为血管生成。血管生成是在胚胎和胎儿器官发育的关键过程中,以及受损区域的修复。该过程是由组织氧减少(缺氧)或氧张力不足引起的,从而导致衬有内皮细胞的血管新发展。血管生成受促进和减少该过程的信号调节。这些促血管生成和抗血管生成信号包括整联蛋白、趋化因子、血管生成素、氧敏感剂、

膜泡运输衣被的形成

  衣被是在一类叫作衣被召集GTP酶(coat-recruitment GTPase)作用下形成的。衣被召集GTP酶通常为单体GTP酶(monomeric GTPase),也叫G蛋白,起分子开关的作用,结合GDP的形式没有活性,位于细胞质中,结合GTP而活化,转位至膜上,能与衣被蛋白结合,促进核化和

日食形成过程

  由于地球轨道与月球轨道有一个5度的夹角,在特定的时间月球会运行至一个特別的位置,令太阳、月球及地球连成一线,这时月球刚好遮掩了太阳的光球,这样便形成一次日食。   一次日全食的过程可以包括以下五个时期:初亏、食既、食甚、生光、复圆。 初亏   初亏 由于月亮自西向东绕地球运转,所以

关于特异性免疫的形成过程介绍

  在抗原刺激下,机体的特异性免疫应答一般可分为感应、反应和效应3个阶段。分为三个阶段:  1.感应阶段是抗原处理、呈递和识别的阶段;  2.反应阶段是B细胞、T细胞增殖分化,以及记忆细胞形成的阶段;  3.效应阶段是效应T细胞、抗体和淋巴因子发挥免疫效应的阶段。  如果某些病原体突破了第一道和第二