磁光效应的概念

磁光效应是指强磁场对光和物质的相互作用的影响,随着激光和光电子学等新的科学技术的出现和发展,磁光效应越来越受到重视,在研究的广度和深度上都有了极大的提升。......阅读全文

磁光效应的概念

磁光效应是指强磁场对光和物质的相互作用的影响,随着激光和光电子学等新的科学技术的出现和发展,磁光效应越来越受到重视,在研究的广度和深度上都有了极大的提升。

磁光效应的概念和应用

克尔磁光效应的最重要应用就是观察铁磁材料中难以捉摸的磁畴。因不同磁畴区的磁化强度的不同取向使入射偏振光产生方向、大小不同的偏振面旋转,再经过检偏器后就出现了与磁畴相应的明暗不同的区域。利用现代技术,不但可进行静态观察,还可进行动态研究。这些都导致一些重要发现和关于磁畴、磁学参数的有效测量。

磁光效应的概念和应用

当左、右旋圆偏振光在置于磁场中的媒质内传播而有不同的吸收系数时,入射的线偏振光传播一段距离后会变为椭圆偏振光,这个效应叫法拉第椭圆度效应或磁圆二向色性效应,简记为MCD。法拉第椭圆度和法拉第旋转均由媒质的介电张量非对角组元的实部和虚部决定。

克尔磁光效应的概念和应用

线偏振光入射到磁化媒质表面反射出去时,偏振面发生旋转的现象。也叫克尔磁光效应或克尔磁光旋转。这是继法拉第效应发现后,英国科学家J.克尔于1876年发现的第二个重要的磁光效应。按磁化强度和入射面的相对取向,克尔磁光效应包括三种情况:极向克尔效应, 即磁化强度 M 与介质表面垂直时的克尔效应;横向克尔效

磁光效应和光磁效应的概念

磁光效应克尔磁光效应的最重要应用就是观察铁磁材料中难以捉摸的磁畴。因不同磁畴区的磁化强度的不同取向使入射偏振光产生方向、大小不同的偏振面旋转,再经过检偏器后就出现了与磁畴相应的明暗不同的区域。利用现代技术,不但可进行静态观察,还可进行动态研究。这些都导致一些重要发现和关于磁畴、磁学参数的有效测量。光

磁光效应的定义

磁光效应是指强磁场对光和物质的相互作用的影响,随着激光和光电子学等新的科学技术的出现和发展,磁光效应越来越受到重视,在研究的广度和深度上都有了极大的提升。

磁光效应的应用

虽然法拉第早在 1845 年就发现了磁光效应,但在其后相当长的时间内并未获得实质性的应用,只是不断在发现新的磁光效应和建立初步的磁光理论。直到 1956 年,贝尔实验室②③在偏光显微镜下,应用透射光观察到钇铁石榴 单晶材料中的磁畴结构,才使得磁光效应的研究向应用领域发展 [2]  。特别是上世纪60

磁光效应简介

磁光效应克尔磁光效应的最重要应用就是观察铁磁材料中难以捉摸的磁畴。因不同磁畴区的磁化强度的不同取向使入射偏振光产生方向、大小不同的偏振面旋转,再经过检偏器后就出现了与磁畴相应的明暗不同的区域。利用现代技术,不但可进行静态观察,还可进行动态研究。这些都导致一些重要发现和关于磁畴、磁学参数的有效测量。

磁光效应简介

磁光效应当左、右旋圆偏振光在置于磁场中的媒质内传播而有不同的吸收系数时,入射的线偏振光传播一段距离后会变为椭圆偏振光,这个效应叫法拉第椭圆度效应或磁圆二向色性效应,简记为MCD。法拉第椭圆度和法拉第旋转均由媒质的介电张量非对角组元的实部和虚部决定。

磁光效应的应用介绍

虽然法拉第早在 1845 年就发现了磁光效应,但在其后相当长的时间内并未获得实质性的应用,只是不断在发现新的磁光效应和建立初步的磁光理论。直到 1956 年,贝尔实验室②③在偏光显微镜下,应用透射光观察到钇铁石榴 单晶材料中的磁畴结构,才使得磁光效应的研究向应用领域发展 [2]  。特别是上世纪60

什么是磁光效应?

当左、右旋圆偏振光在置于磁场中的媒质内传播而有不同的吸收系数时,入射的线偏振光传播一段距离后会变为椭圆偏振光,这个效应叫法拉第椭圆度效应或磁圆二向色性效应,简记为MCD。法拉第椭圆度和法拉第旋转均由媒质的介电张量非对角组元的实部和虚部决定。

什么是磁光效应?

磁光效应是指强磁场对光和物质的相互作用的影响,随着激光和光电子学等新的科学技术的出现和发展,磁光效应越来越受到重视,在研究的广度和深度上都有了极大的提升。

克尔磁光效应简介

克尔磁光效应线偏振光入射到磁化媒质表面反射出去时,偏振面发生旋转的现象。也叫克尔磁光效应或克尔磁光旋转。这是继法拉第效应发现后,英国科学家J.克尔于1876年发现的第二个重要的磁光效应。按磁化强度和入射面的相对取向,克尔磁光效应包括三种情况:极向克尔效应, 即磁化强度 M 与介质表面垂直时的克尔效应

磁光效应的背景及简介

磁光效应是指处于磁化状态的物质与光之间发生相互作用而引起的各种光学现象。包括法拉第效应、克尔磁光效应、塞曼效应和科顿-穆顿效应等。这些效应均起源于物质的磁化,反映了光与物质磁性间的联系。光与磁场中的物质,或光与具有自发磁化强度的物质之间相互作用所产生的各种现象,主要包括法拉第效应、科顿-穆顿效应、克

什么是克尔磁光效应?

线偏振光入射到磁化媒质表面反射出去时,偏振面发生旋转的现象。也叫克尔磁光效应或克尔磁光旋转。这是继法拉第效应发现后,英国科学家J.克尔于1876年发现的第二个重要的磁光效应。按磁化强度和入射面的相对取向,克尔磁光效应包括三种情况:极向克尔效应, 即磁化强度 M 与介质表面垂直时的克尔效应;横向克尔效

磁光效应的研究背景及简介

磁光效应 是指处于磁化状态的物质与光之间发生相互作用而引起的各种光学现象。包括法拉第效应、克尔磁光效应、塞曼效应和科顿-穆顿效应等。这些效应均起源于物质的磁化,反映了光与物质磁性间的联系。

磁光效应的应用磁光存储记录

磁光记录是近年来发展起来的高新技术,是存储技术的一大飞跃发展。磁光记录是目前最先进的信息存储技术,它兼有磁记录和光记录两者的优点,磁光记录兼有光记录的大容量和磁记录的可重写性。磁光记录利用磁光克尔效应对记录信号进行读出。

磁光效应的应用磁光环行器

随着光纤通信技术在通信领域的应用,具有光的非互易性和自光行进方向耦合端循环的磁光环行器被广泛应用于光纤通信技术中。利用环行器可在一根光纤内传输两个不同方向的信号,从而大大减小了系统的体积和成本。

磁光效应的应用磁光隔离器

随着光纤通信、光信息处理和磁光记录等技术的高速发展,光源的稳定性和鲁棒性就显得至关重要。各种反射光都会严重干扰光源的正常输出,从而影响了整个系统的正常工作。磁光隔离器通过防止反向传输的干扰光对光源的影响,提高系统的工作稳定性,实现正向通过,反向隔离的目的。

磁光效应的应用磁光传感器

光纤电流传感器具有很好的绝缘性和抗干扰能力以及较高的测量精度,容易小型化。磁光效应传感器就是利用激光技术发展而成的高性能传感器。光纤电流传感器是根据法拉第效应原理,当一束线偏振光通过置于磁场中的磁光材料时,光的偏振方向发生改变来实现传感器的功能。磁光效应传感器作为一种特定用途的传感器,能够在特定的环

磁光效应的应用磁光调制器

磁光调制器是利用偏振光,通过磁光介质,透射光的偏振面发生旋转来对光束进行调制的一种工具。磁光调制器可用作红外检测器的斩波器,红外辐射高温计、高灵敏度偏振计等。磁光调制器的工作原理是将电信号先转换成与之对应的交变磁场,再由磁光效应改变在介质中传输的光波的偏振态,从而达到改变光强等参的目的。

内分泌的概念和相关概念

内分泌 (internal secretion)是外分泌的对应词,是由C·Bermard(1859)所命名,即机体组织所产生的物质不经导管而直接分泌于血液(体液)中的现象。包括4个概念:1)内分泌;2)内分泌系统;3)“内分泌紊乱”的简称;4)“内分泌系统疾病”的简称。1)内分泌是一生理学名词;机体

混倍体的概念

这种个体的染色体数仍表现为多倍性的和异倍性的变化。用秋水仙素处理引起体细胞的染色体数加倍时,二倍性细胞和多倍性细胞也往往混在一起。通常在菠菜的根尖上可看到混倍性。在昆虫中,有由于内分裂所造成的内多倍化(参见内多倍性)而产生数目极多的巨核〔如已知在一种水(Gerris lateralis)的唾腺中有2

抗体的概念

抗体(antibody)是指机体由于抗原的刺激而产生的具有保护作用的蛋白质。它(免疫球蛋白不仅仅只是抗体)是一种由浆细胞(效应B细胞)分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等的大型Y形蛋白质,仅被发现存在于脊椎动物的血液等体液中,及其B细胞的细胞膜表面。抗体能识别特定外来物的一个独特特征

电桥的概念

  电桥的概念:用比较法测量各种量(如电阻、电容、电感等)的仪器。最简单的是由四个支路组成的电路。各支路称为电桥的“臂”。如图电路中有一电阻为未知(R2),一对角线中接入直流电源U,另一对角线接入检流计G。可以通过调节各已知电阻的值使G中无电流通过,则电桥平衡,未知电阻R2=R1·R4/R3。

激素的概念

激素是高度分化的内分泌细胞合成并直接分泌入血的化学信息物质,它通过调节各种组织细胞的代谢活动来影响人体的生理活动。由内分泌腺或内分泌细胞分泌的高效生物活性物质,在体内作为信使传递信息,对机体生理过程起调节作用的物质称为激素。它是我们生命中的重要物质。

端粒的概念

端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。

ATP的概念

腺嘌呤核苷三磷酸(简称三磷酸腺苷)是一种不稳定的高能化合物,由1分子腺嘌呤,1分子核糖和3分子磷酸组成。又称腺苷三磷酸,简称ATP。腺苷三磷酸(ATP adenosine triphosphate)是由腺嘌呤、核糖和3个磷酸基团连接而成,水解时释放出能量较多,是生物体内最直接的能量来源。

混倍性的概念

是指在同一个体中二倍性组织与非二倍性组织混存的现象(B.Nemec,1931),此时称该个体称为混倍体(mixoploid)。这种个体的染色体数仍表现为多倍性的和异倍性的变化。用秋水仙素处理引起体细胞的染色体数加倍时,二倍性细胞和多倍性细胞也往往混在一起。通常在菠菜的根尖上可看到混倍性。在昆虫中,有

Slicer的概念

Slicer:在切割型RISC中的内切酶的另外一种表述方法。