Antpedia LOGO WIKI资讯

清华大学颜宁Cell子刊最新综述

来自清华大学,清华大学-北京大学生命科学联合中心的颜宁教授发表了题为“Structural advances for the major facilitator superfamily (MFS) transporters”的综述文章,介绍了MFS膜转运蛋白超家族的最新结构生物学研究成果,并重点探讨了底物结合,协同运输耦合等方面的分子机制。 磷脂双层膜为细胞或细胞器提供了一道疏水屏障,其中的膜转运蛋白承担着营养物质吸收、代谢产物分泌、细胞与外界的物质信息交换以及产能耗能等一系列重要的生理活动。根据转运能量的来源可以将转运蛋白分为初级主动转运蛋白(primary active transporters)和次级转运蛋白(secondary transporters)。 其中次级转运蛋白利用由于物质在膜内外浓度不同造成的电化学渗透势能来转运底物,典型代表是主要协助转运蛋白超家族(major facilita......阅读全文

重磅:全球获批小分子药物靶点的现状分析

  近期,Nature Reviews Drug Discovery(IF=47)杂志刊登的题为“A comprehensive map of molecular drug targets”的综述,对目前已获批的小分子药物及靶点进行了综合分析。   研究人员收集了1591种批准药(小分子药物和

重磅:全球获批小分子药物靶点的现状分析

  近期,Nature Reviews Drug Discovery(IF=47)杂志刊登的题为“A comprehensive map of molecular drug targets”的综述,对目前已获批的小分子药物及靶点进行了综合分析。   研究人员收集了1591种批准药(小分子药物和

全球获批小分子药物靶点的现状分析

近期,Nature Reviews Drug Discovery(IF=47)杂志刊登的题为“A comprehensive map of molecular drug targets”的综述,对目前已获批的小分子药物及靶点进行了综合分析。研究人员收集了1591种批准药(小分子药物和生物药物),以及

致病蛋白水平的正反馈调控机制

  近日,复旦大学鲁伯埙课题组针对神经退行性病变亨廷顿病的研究取得重要突破,发现了变异HTT蛋白积累的正反馈机制,对亨廷顿病 (Huntington’s Disease,HD)疾病机制的理解提供了全新视角。此外,研究揭示了mHTT蛋白调控的激酶基因MAPK11及HIPK3,为HD疾病治疗提供了潜在新

靶向tau乙酰化 为神经退行性疾病治疗找到新希望

  来自美国格拉德斯通研究所的科学家们最近发现一种用于类风湿性关节炎的治疗药物--双水杨酯(salsalate)能够有效逆转额颞痴呆(FTD)动物模型中tau相关功能紊乱。Salsalate能够阻止tau在脑中的累积,避免发生类似阿尔茨海默病和额颞痴呆的认知损伤。  近日,相关研究结果发表在国际学术

PNAS:核糖体装配的引路者

  在机体内的蛋白执行着多种功能,在它们起作用时特异性往往很重要。如果蛋白丧失了这些特异性,就会在体内引起混乱,甚至导致疾病。DEAD-box 蛋白因其氨基酸序列而得名,是一大类RNA依赖型的ATP酶。这些蛋白负责调节基因表达和RNA代谢,并参与了核糖体装配和细胞代谢。   近日,斯克里普斯研

EXPEDITION3试验即将公布结果,粉状蛋白假说面临审判

  礼来前一阵曾宣布将在下周感恩节后公布其阿尔茨海默病(AD)药物Solanezumab(sola)第三个三期临床EXPEDITION3(Exp3)的结果。这可能是2016年最重要的临床试验,对礼来和AD患者都非常重要。如果成功不仅会给礼来带来每年50亿美元以上销售、为患者带来第一个能改变疾病进程的

多肽荧光标记——FITC修饰和AMC修饰

  荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操

多肽荧光标记——FITC修饰和AMC修饰

  荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操

荧光标记肽技术常用的多肽修饰荧光物质

荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操作简

多肽荧光标记——FITC修饰和AMC修饰(一)

荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操作简

多肽FRET荧光标记技术

荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操作简

FITC&AMC等荧光标记技术

荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操作简

常用多肽修饰方法及过程综述

多肽是一种由两个或多个氨基酸通过肽键(酰胺键)连接而形成的化合物。多肽在调节机体各系统、器官、组织和细胞的功能活动以及在生命活动中发挥重要作用,并且常被应用于功能分析、抗体研究、药物研发等领域。而通过对多肽进行修饰进而改变多肽的理化性质也是多肽研究中一种常用的手段。多肽修饰种类繁多,从修饰位点不同则

刘允才教授PNAS解析免疫调控新途径

  来自美国拉霍亚过敏和免疫学研究所(La Jolla Institute for Allergy & Immunology, La Jolla, CA),中科院上海生化与细胞研究所的研究人员利用一种体内敲除技术,分析了蛋白Neddylation在调控T细胞功能上的作用,为炎症疾病治疗提

蛋白质修饰研究现状与未来

  蛋白质的修饰与降解,和生命活动以及各种人类疾病密切相关,这一领域已成为全球生物医学界关注的焦点。蛋白质的糖基化修饰、磷酸化修饰、乙酰化修饰、泛素化修饰、亚硝基化修饰等,是蛋白在生物代谢过程中的重要装备,对研究疾病具有重要意义。蛋白质的正确的修饰对于蛋白降解也非常重要,从而保证生命活动的正常循环。

Salk研究所华人课题组发表新文章揭开p75蛋白真实身份

  表面上爱管闲事的p75蛋白会引发疼痛,实际上,它是治疗癌症和其他神经疾病的隐藏机关。  感觉神经元控制大脑识别疼痛、触觉、运动和空间定位。Salk研究所的研究表明p75蛋白在疼痛神经回路中起重要作用,结论将影响伤性脊髓损伤等疾病治疗。  “p75蛋白是个爱管闲事的家伙,它参与各种不同信号通路,”

利妥昔单抗注射液被纳入优先审评有望成为首个生物类药

  近日,复星医药接连发布产品获批临床的公告,包括子公司复宏汉霖的重组抗VEGFR2全人单克隆抗体注射液、子公司重庆复创及复尚慧创的FCN-437c胶囊、子公司复星医药产业及星泰医药的注射用FN-1501。此外,值得一提的是,1月29日复星医药的利妥昔单抗注射液被纳入优先审评,有望成为国内首个生物类

2012年生物药化学药项目拟支持单位公示

  2012年蛋白类生物药、通用名化学药项目拟支持名单日前出炉,其中,涉及上市公司包括亚宝药业、美罗药业、上海医药、健康元等。   2012年蛋白类生物药、通用名化学药项目拟支持名单日前出炉,其中,涉及上市公司包括亚宝药业、美罗药业、上海医药、健康元等。   工业和信息化部消费品司医药

温州医科大学李校堃团队解析FGF23蛋白质机器、揭示FGF...

  温州医科大学药学院李校堃教授团队与美国纽约大学医学中心MoosaMohammadi教授团队通过数年联合攻关,在国际上率先解析“抗衰老蛋白αklotho-成纤维细胞生长因子受体1c (FGFR1c)-成纤维细胞生长因子23 (FGF23)”三元复合物晶体结构。   这一相关成果以长文(Artic

Nature:抗EGFR第四代新药EAI045诞生背后的故事

  神农尝百草的故事每一个中国人都不陌生,《本草纲目》更是因为周杰伦响彻大江南北。传统中医以天然存在的植物或者动物入药,这很容易理解。那么,我们日常服用的各种小药片或者胶囊究竟是如何诞生的呢?  5月25日,国际顶级学术期刊《自然》刊发了题为Overcoming EGFR(T790M)and EGF

JACS:“量子点”助力RNA干扰技术

15年前,科学家发现了一种阻碍基因表达路径的方法——RNA干扰(简称RNAi)。这项荣膺2006年诺贝尔奖的发现承载着医学科学的迫切希望,它可以通过沉默基因来阻碍特定蛋白制造,从而达到疾病治疗的效果。不过到目前为止,RNA干扰技术很难在活体细胞中取得应用。 图片说明:由不同尺寸的相同物质构成的

上海药物所肝素合成过程中关键酶结构的解析研究获进展

  硫酸乙酰肝素是在细胞表面和细胞质基质中广泛存在的一种多糖,它能与一系列的生长因子、趋化因子和白介素等功能性蛋白质相互作用,进而在胚胎发育、细胞生长、炎症反应、凝血、肿瘤转移和病毒侵染等生理过程中发挥作用。葡萄糖醛酸C5异构酶则是硫酸乙酰肝素和肝素合成中的一个关键酶,它能将糖链中的葡萄糖醛酸异构为

中国科学家研究自身免疫的最新成果

《自然—免疫学》: 裴钢臧敬五等发表自身免疫蛋白研究最新成果 7月9日,国际著名学术期刊《自然—免疫学》网络版在线发表了中国科学家关于调节CD4+ T细胞存活和自身免疫的最新研究成果。 从中国科学院上海生命科学研究院了解到,这项研究发现,在机体外周免疫系统中,有一种具有多重功能的b(同符

Nature:不对称的氨基酸α-芳基化修饰是开发新药物的起点

  氨基酸是羧酸碳原子上的氢原子被氨基取代后的化合物,氨基酸分子中含有氨基和羧基两种官能团。与羟基酸类似,氨基酸可按照氨基连在碳链上的不同位置而分为α-,β-,γ-...w-氨基酸,但经蛋白质水解后得到的氨基酸都是α-氨基酸,而且仅有二十几种,是蛋白的构成单元(building block)。对氨基

“拔罐疗法”有了科学解释

  骨质疏松症的临床治疗主要是延缓进一步的骨丢失,比如补钙。那么,已经丢失的怎么补回来?张令强团队希望找到新的策略来弥补现有临床治疗的不足。肿瘤研究也是该团队关注的一个重要方向。   细胞为什么会出现恶性增殖?为什么随着年龄增长容易出现骨质疏松?追根溯源,这些都与蛋白质稳态调控有关。   军事科

北京市科学技术奖一等奖成果:揭秘细胞内的“分子警察”

  骨质疏松症的临床治疗主要是延缓进一步的骨丢失,比如补钙。那么,已经丢失的怎么补回来?张令强团队希望找到新的策略来弥补现有临床治疗的不足。肿瘤研究也是该团队关注的一个重要方向。   细胞为什么会出现恶性增殖?为什么随着年龄增长容易出现骨质疏松?追根溯源,这些都与蛋白质稳态调控有关。   军事科

2017年北京市科学技术奖一等奖 揭秘细胞内的“分子警察”

  细胞为什么会出现恶性增殖?为什么随着年龄增长容易出现骨质疏松?追根溯源,这些都与蛋白质稳态调控有关。  军事科学院军事医学研究院生命组学研究所(原军事医学科学院放射与辐射医学研究所)张令强团队紧扣蛋白质稳态调控,以翻译后修饰为切入点,多年来重点针对泛素化、类泛素化、乙酰化在蛋白质稳态调控中的功能

上海巴斯德所等FOXP3蛋白复合体组装研究新进展

  6月14日,国际学术期刊《细胞》子刊Cell Reports在线发表了由中科院上海生命科学研究院生化与细胞所、中科院上海巴斯德研究所与美国宾夕法尼亚大学医学院研究人员合作完成的研究论文Structural and Biological Features of FOXP3 Dime

基因检测产品助力靶向治疗

   作为一种体外诊断技术, 伴随诊断(companion diagnostic,CD)能够提供有关患者针对特定治疗药物的治疗反应的信息,有助于确定能够从某一治疗产品中获益的患者群体,从而改善治疗预后并降低保健开支。此外,伴随诊断还有助于确定最有可能对治疗药物产生响应的患者群体。  随着分子生物学研