Antpedia LOGO WIKI资讯

科研人员激励机制优化需系统化设计

我国拥有数量庞大的科研人员队伍,科技人力资源总量和研发人员总数已连续多年位居世界首位。如何适应我国科研体系向高水平科技自立自强转型,充分发挥科研人员红利优势,激发科研人员的动力、活力和潜能,提高科研人员整体效能,建成世界重要的人才中心和创新高地是新时代人才强国战略的核心任务。 从国际上看,世界主要科技强国围绕激发科研人员创新创造活力建立了系统性、多层次的科研人员激励体系。一是提供良好的工作条件和科研环境。一方面,注重提供世界一流的工作条件,不仅保障充足的科研经费,还非常重视实验室建设,配置充分满足人员科研需求的实验设备。另一方面,赋予科研人员极大的科研自主权,允许自由选择研究课题、自主支配研究经费。此外,建立起了行之有效的科研辅助与支撑体系,减少了科研人员的各种事务性活动,保障了时间投入。 二是采取丰厚多样的物质和精神激励。许多国家为科研人员提供了较为全面的薪酬保障,除工资性收入较为客观外,科研人员可根据工作实际获得额外的智......阅读全文

“打破机制束缚,激发科研人员创新热情”

  2015年5月21日,北京市财政局(以下简称市财政局)、北京市科学技术委员会(以下简称市科委)联合修订、并发布了《北京市科技计划项目(课题)经费管理办法》(以下简称《管理办法》)。本次《管理办法》的修订重在打破束缚创新的科技经费管理机制,激发科研人员创新热情。日前,市财政局、市科委从修订背景、改

科研人员发现种子贮藏蛋白转运重要机制

  5月9日,浙江农林大学亚热带森林培育国家重点实验室教授沈锦波团队在美国《国家科学院院刊》在线发表了题为“植物ESCRT复合体组分蛋白ALIX与逆转运复合体协同作用调控可溶性蛋白分选”的研究论文。该研究揭示了ALIX蛋白与逆转运复合体相互协作,调控种子蛋白存储的分子机制,为培育高质量、高品质的农林

我国科研人员揭示凝血系统稳态调控分子机制

  凝血级联反应,包括内源性和外源性凝血途径并涉及多种凝血因子酶原激活的瀑布级联反应,从而导致纤维蛋白原的激活与血栓的形成。目前已鉴定出十九种凝血因子与抗凝血因子参与凝血级联反应并维持凝血与抗凝的稳态。它们包括纤维蛋白原家族(纤维蛋白原等)、维生素K依赖家族(凝血酶等)、接触家族(凝血因子XII等)

我国科研人员揭示灵长类卵巢衰老的分子机制

  卵巢是重要的女性生殖器官,其衰老表现包括卵母细胞数量减少、质量下降,及雌性生殖力降低等。由于伦理及样本来源的限制,将人类正常卵巢组织用于卵巢生理性衰老的研究难度较大,限制了对人类卵巢衰老机制的深入理解,并进一步制约了女性卵巢衰老及相关疾病干预手段的发展。  膜生物学国家重点实验室与北京大学联合,

我国科研人员发现炎性肠炎发病新机制

  炎性肠病(Inflammatory bowel disease, IBD)是慢性肠道炎症性疾病,主要包括克罗恩病和溃疡性结肠炎,多发于结肠和回肠末端。临床上,患者会表现出反复发作的腹痛、腹泻,有时会有血便的现象。反复的炎症会引起肠梗阻,需要手术切除。而多次肠梗阻手术切除术,会导致患者吸收功能严重

科研人员揭示木薯干旱逆境适应的分子机制

  近日,中国热带农业科学院生物所与上海交通大学合作在木薯干旱逆境适应的分子机制研究方面取得新进展,揭示了木薯SPL9转录因子负向调控耐干旱的机理,并利用该基因创制耐旱木薯种质,为作物耐干旱遗传改良提供了理论与技术支撑。相关研究结果发表于《理论与应用遗传学》。  干旱是影响作物生长发育的重要非生物逆

科研人员解析油菜硫苷转运机制助力优质育种

近日,中国农科院油料所研究员刘胜毅团队和华中农业大学信息学院教授杨庆勇团队合作,开发了一种多拷贝基因功能鉴定的新思路/方法,基于此鉴定,解析了油菜中硫苷的重要转运子BnaA06.GTR2,并利用CRISPR/cas9创制了油菜育种上可直接利用的种子低硫苷、营养组织高硫苷的种质资源。相关论文1月25日

科研人员首次发现G蛋白偶联受体分子识别机制

中科院上海药物研究所蒋华良课题组和王明伟课题组与美国、荷兰、丹麦等国科学家合作,提出了G蛋白偶联受体(GPCR)胞外段与跨膜区的动态变化模式,发现了该受体存在“开放”和“关闭”两种分子构象,从而为其本身以及其他B型G蛋白偶联受体的全长结构解析、功能研究和药物发现奠定了基础。相关研究7

科研人员揭示细胞表皮毛发育新机制

近日,中国农业大学园艺学院任华中、刘兴旺团队在 Plant Physiology (《植物生理学》)发表研究论文。该研究首次确立了多细胞表皮毛的发育时空轨迹,综合时序性转录组及基因功能分析手段初步建立了其发育模式,为表皮细胞发育研究提供了重要的参考。表皮毛是一种广泛存在于陆生植物地上部表皮的一种特化

科研人员发现蓝细菌适应高盐逆境深层机制

  蓝细菌,又称为蓝藻或蓝绿藻,是地球上最古老的微生物之一。它们能通过植物型光合作用,将二氧化碳固定并转化为各类碳水化合物。研究发现,很多蓝细菌在高盐环境下在细胞内合成并积累蔗糖等小分子化合物来抵抗逆境,然而,相关调控机制仍未被清楚揭示。  中国科学院青岛生物能源与过程研究所微生物代谢工程研究组长期