Antpedia LOGO WIKI资讯

拟南芥超级增强子鉴定与功能验证研究获进展

近日,东北地理所农田有害生物控制学科组孟凡立研究员团队与美国密歇根州立大学(Michigan State University)Jiming Jiang团队和英国约翰英纳斯中心(John Innes Centre)Anne Osbourn团队合作,在国际权威SCI期刊PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[l1] (PNAS)(IF:12.779)上在线发表了题为“Identification and functional validation of super-enhancers in Arabidopsis thaliana”的研究论文,该研究在植物中首次定位和鉴定植物超级增强子,将超级增强子概念引入植物研究领域。 增强子是长度约200 bp非编码DNA序列,通过结合转录因子(Transcriptio......阅读全文

拟南芥超级增强子鉴定与功能验证研究获进展

  近日,东北地理所农田有害生物控制学科组孟凡立研究员团队与美国密歇根州立大学(Michigan State University)Jiming Jiang团队和英国约翰英纳斯中心(John Innes Centre)Anne Osbourn团队合作,在国际权威SCI期刊PROCEEDINGS OF

Cell:两项研究聚焦“超级增强子”

  近日,麻省理工白头研究所和哈佛丹娜法伯癌症研究所以及冷泉港实验室这三家知名的研究机构的科学家惊讶地发现,一组称作“超级增强子”( super-enhancer)的强有力基因调控子,它们控制了细胞的状态和特性。相关两个研究论文刊登在了近期出版的《细胞》(Cell)杂志上。   研究发现,健康

拟南芥转基因植株的鉴定

实验概要本实验介绍了拟南芥转基因植株的初步鉴定方法,包括:阳性苗的筛选,GUS基因表达分析,组织PCR和RT-PCR分析。主要试剂0.2%的Triton X-100,10%的次氯酸钠,含20 mg/L Hygromycin的MS培养基,X-Gluc,75%乙醇,0.25 N NaOH,0.25

eRNA与Super Enhancer RNA在转录调控中扮演的角色

增强子是真核生物中关键的顺式作用基因调控元件,能有效地促进基因表达。它们可以通过作为转录因子和辅助因子的结合平台来维持转录的精确控制。超级增强子是由一簇典型增强子串联组成的具有更强转录调控能力的顺式元件。而全基因组分析发现增强子和超级增强子可以普遍进行转录,产生eRNA和SE-lncRNA。它们都具

武汉大学发现一个新的结直肠癌的致癌转录因子

  结直肠癌是世界上发病率和死亡率最高的恶性肿瘤之一。近日,武汉大学生命科学学院的一项最新研究成果,揭示了一个新的结直肠癌的致癌转录因子,为结直肠癌的研究提供了重要的表观基因组数据和新的关键调控因子,相关论文近日在线发表于《自然—通讯》。  据介绍,目前关于结直肠癌的多组学研究广泛集中在基因组学和转

拟南芥RNA核糖甲基化修饰研究方面获进展

  3月30日,中国科学院生物物理研究所研究员叶克穷课题组、北京大学现代农学院博士王玉秋和中科院遗传与发育研究所研究员李家洋课题组合作在Nucleic Acids Research上发表了题为Profiling of RNA ribose methylation in Arabidopsis tha

在拟南芥生殖细胞DNA复制研究中取得进展

  被子植物雄配子发生过程中,单倍体小孢子经历一次不对称有丝分裂(PMI)产生营养细胞和生殖细胞,之后生殖细胞再进行一次对称的有丝分裂(PMII)形成两个精细胞。拟南芥花粉常被看作一个理想的发育生物学模型,这个简单的系统不仅经历了细胞的分裂、分化、细胞命运的决定等重要生物学过程,还涉及大量花粉特异基

PLoS Genet:何新建等模式植物拟南芥研究获进展

  2014年1月22日,北京生命科学研究所何新建实验室在《PLOS Genetics》杂志在线发表题为“The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA me

研究人员揭示超级增强子动态甲基化调控转录异质性

  CpG DNA甲基化早在70年代就被提出是一种用来控制基因表达的DNA化学修饰,而我们对DNA甲基化在基因组不同区域的具体功能,在疾病、发育过程中所扮演的具体角色,以及控制基因表达的详细机理,直到今天并没有全面详细的认知。  2019年8月15日,美国Whitehead研究所Rudolf Jae

拟南芥精氨酸甲基转移酶AtPRMT5功能研究获新进展

  蛋白质是生物体结构与功能的基本单位,是所有生命活动的物质基础和生理功能的重要执行者。蛋白质翻译后修饰是调节蛋白质生物学功能的关键步骤之一。作为基因产物,几乎所有的蛋白质都要经过翻译后的剪切修饰才能成为成熟蛋白质。目前已发现的蛋白质翻译后修饰形式已经多达100种以上,其中蛋白质精氨酸