深紫外激光二极管室温下发射连续波

由2014年诺贝尔物理学奖获得者、日本名古屋大学材料与系统可持续发展研究所的天野弘领导的一个研究小组,与旭化成株式会社合作,成功地对深紫外激光二极管(波长低至UV-C区)进行了世界上第一个室温连续波激光发射。研究结果近日发表在《应用物理快报》上,代表这项技术朝着广泛应用迈出了一步。 从2017年开始,天野弘研究小组与提供2英寸氮化铝基板的旭化成公司合作,开始开发深紫外激光二极管。起初,向该装置注入足够的电流太困难,阻碍了紫外可见(UV-C)激光二极管的进一步发展。 2019年,天野弘的研究小组使用偏振诱导掺杂技术解决了上述问题,首次制造了一种短波长的UV-C半导体激光器,它可以在短脉冲电流下工作。这些电流脉冲所需的输入功率为5.2W,这对于连续波激光来说太高了,因为功率会导致二极管迅速升温并使激光停止。 研究人员此次重塑了设备本身的结构,将激光器在室温下运行所需的驱动功率降低至仅1.1W。研究人员发现,强晶体应变会阻碍......阅读全文

深紫外激光二极管室温下发射连续波

  由2014年诺贝尔物理学奖获得者、日本名古屋大学材料与系统可持续发展研究所的天野弘领导的一个研究小组,与旭化成株式会社合作,成功地对深紫外激光二极管(波长低至UV-C区)进行了世界上第一个室温连续波激光发射。研究结果近日发表在《应用物理快报》上,代表这项技术朝着广泛应用迈出了一步。  从2017

激光二极管简介

  激光二极管:激光二极管是当前最为常用的激光器之一,在二极管的PN结两侧电子与空穴的自发复合而发光的现象称为自发辐射。当自发辐射所产生的光子通过半导体时,一旦经过已发射的电子—空穴对附近,就能激励二者复合,产生新光子,这种光子诱使已激发的载流子复合而发出新光子现象称为受激辐射。如果注入电流足够大,

激光二极管制造难题破解-产生从近紫外到近红外更广泛波长

英破解塑料激光二极管制造难题 新材料在提高导电性能的同时不影响发光性能 英国帝国理工学院科学家在近期《自然•材料》杂志上发表文章称,他们通过对一种被称为PFO的塑料材质的分子结构进行改进,最终解决了塑料激光二极管的制造难题。这意味着以塑料半导体作为材质的激光二极管有望很快应用于CD播放器等电子产

胶体量子点激光二极管问世

  新墨西哥州洛斯阿拉莫斯国家实验室的科学家已将精心设计的胶体量子点结合到一种新型LED中,该新型LED包含集成的光学谐振器,从而使LED能够充当激光器。研究人员展示了一种可操作的LED,该LED还可以用作光泵浦的低阈值激光器。为了实现这些目标,他们将光谐振器直接集成到LED架构中,而不会阻碍电荷载

半导体二极管激光器的应用

半导体二极管激光器是最实用最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦,其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及

半导体二极管激光器的特性

(1) 体积小,重量轻;(2) 驱动功率和电流较低;(3) 效率高、工作寿命长;(4) 可直接电调制;(5) 易于与各种光电子器件实现光电子集成;(6) 与半导体制造技术兼容;可大批量生产。由于这些特点,半导体激光器自问世以来得到了世界各国的广泛关注与研究。成为世界上发展最快、应用最广泛、最早走出实

吉时利Keithley-2502激光二极管电源表

Keithley 2502光纤校准光电二极管计的简单介绍:      2520脉冲式激光二极管测试系统是一款用于激光 极管制造I艺流程早期测试的综合同步测试系统,尤其是当无法轻易实现合适的温度控制时。2520在: -台紧凑的半机架式仪器中,提供了激光二极管脉冲测试与连续LIV (光电流电压)测试所需

什么是紫外激光器

紫外激光器有分为固体紫外激光器和气体紫外激光器,固体紫外激光器按泵浦方式分为氙灯泵浦紫外激光器、氪灯泵浦紫外激光器以及新型的激光二极管泵浦全固态激光器。固体紫外激光器光电转换效率一般较低,而ld全固态紫外激光器则具有效率高、重频高、性能可靠、体积小、光束质量较好及功率稳定等特点。

激光焊接机深熔焊接的主要工艺参数

  (1)激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。而当激光功率密度处于

半导体二极管激光器的工作原理

根据固体的能带理论,半导体材料中电子的能级形成能带。高能量的为导带,低能量的为价带,两带被禁带分开。引入半导体的非平衡电子-空穴对复合时,把释放的能量以发光形式辐射出去,这就是载流子的复合发光。一般所用的半导体材料有两大类,直接带隙材料和间接带隙材料,其中直接带隙半导体材料如GaAs(砷化镓)比间接

半导体二极管激光器的工作原理

根据固体的能带理论,半导体材料中电子的能级形成能带。高能量的为导带,低能量的为价带,两带被禁带分开。引入半导体的非平衡电子-空穴对复合时,把释放的能量以发光形式辐射出去,这就是载流子的复合发光。一般所用的半导体材料有两大类,直接带隙材料和间接带隙材料,其中直接带隙半导体材料如GaAs(砷化镓)比间接

蓝色激光二极管支持的12.4-Gbps水下通信

为了在长距离的自来水和海水环境中实现高速水下无线光通信(UWOC),通过预平准16正交幅度调制(QAM)正交频率直接调制450nm蓝色GaN激光二极管(LD)采用分时多路复用(OFDM)数据来实现其最大传输容量高达10 Gbps。所提出的自来水中的UWOC提供了从5.2到12.4Gbps的最

可调谐二极管激光(TDL)气体分析仪

测量关键点一系列的过程适配连接方式给您提供原位管道探头式安装、抽取式配套预处理系统安装,或者管道原位对穿式安装等多种选择。 梅特勒-托利多的所有可调谐二极管激光气体分析仪均无需激光对中,标准的原位管道安装探头式分析仪最小可适合DN100(4")管道安装应用。 其他过程连接适配设计,包括应用于

新型钻石发光二极管-紫外杀菌更安全

  日本研究人员日前开发出一种能够发出紫外线的钻石发光二极管,可作为杀菌灯使用。与使用水银的传统杀菌灯相比,这种钻石发光二极管的安全性要高得多。   日本产业技术综合研究所日前发布公告称,钻石发光二极管采用的是三层结构,最里和最外两层是包含有杂质的不纯人造钻石,中间夹着的是一层纯净的人造钻石。这种

​-紫外激光器的功能介绍

紫外激光器是一种产生紫外光束的激光器;紫外激光器从结构分为固体紫外激光器(光纤紫外激光器),气体紫外激光器,半导体紫外激光器。

紫外准分子激光剥蚀系统

  紫外准分子激光剥蚀系统是一种用于地球科学、环境科学技术及资源科学技术、考古学领域的激光器,于2007年12月13日启用。  技术指标  激光器为ArF193nm紫外准分子激光器,单脉冲能量220mJ;最高重复频率20Hz。经光学系统匀光和聚焦,能量密度可达50J/cm2,剥蚀坑直径可设置为4、8

​-紫外激光器的技术分类

固体紫外激光器固体紫外激光器按泵浦方式分为氙灯泵浦紫外激光器、氪灯泵浦紫外激光器以及新型的激光二极管泵浦全固态激光器。固体紫外激光器光电转换效率一般较低,而LD全固态紫外激光器则具有效率高、重频高、性能可靠、体积小、光束质量较好及功率稳定等特点。由于紫外光子能量大,难以通过外激励源激励产生一定高功率

​-紫外激光器的应用介绍

紫外激光器(UV laser),主要应用于先进研究、开发和工业制造装备,同时广泛用于生物技术和医疗设备、需要紫外光线辐射的消毒设备。基于Nd:YAG/Nd:YVO4晶体开发的DPSS紫外激光器是微加工系统的绝佳选择,并且广泛用于印刷电路板和消费电子产品。紫外激光器非常适合于科研、工业、OEM系统集成

紫外激光器的主要种类

固体紫外激光器固体紫外激光器按泵浦方式分为氙灯泵浦紫外激光器、氪灯泵浦紫外激光器以及新型的激光二极管泵浦全固态激光器。固体紫外激光器光电转换效率一般较低,而LD全固态紫外激光器则具有效率高、重频高、性能可靠、体积小、光束质量较好及功率稳定等特点。由于紫外光子能量大,难以通过外激励源激励产生一定高功率

紫外激光器的主要应用

紫外激光器(UV laser),主要应用于先进研究、开发和工业制造装备,同时广泛用于生物技术和医疗设备、需要紫外光线辐射的消毒设备。基于Nd:YAG/Nd:YVO4晶体开发的DPSS紫外激光器是微加工系统的绝佳选择,并且广泛用于印刷电路板和消费电子产品。紫外激光器非常适合于科研、工业、OEM系统集成

半导体二极管激光器的技术优势

激光二极体的优点有:效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有20~40%,P-N型也达到数15%~25%,总而言之能量效率高是其最大特色。另外,它的连续输出波长涵盖了红外线到可见光范围,而光脉冲输出达50W(脉宽100ns)等级的产品也已商业化,作为激光雷达或激发光源可说是非常容易

半导体二极管激光器的工作条件

半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件:(1)要产生足够的 粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;(2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;(3)要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。半导体激光器

王中林小组发明高效紫外发光二极管

  图中光学照片显示的是在压电光电子效应的作用下,紫外发光二极管的发光强度随施加的应变的增加而增加。下图显示的利用能带理论解释压电光电子效应对p-n结处能带结构和载流子输运过程的调制和改变。  紫外半导体发光二极管在化学、生物、医学和军事领域具有广泛的应用,目前这种材料的内量子效率虽

深紫外固态激光源装备通过验收

  9月6日,由中国科学院承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制项目”在北京通过验收。该系列前沿装备中的深紫外非线性光学晶体与器件平台、深紫外全固态激光源平台,以及基于这两个平台研制的8台新型深紫外激光科研装备各项既定目标全面完成,使我国成为世界上唯一一个能够制造实用

紫外激光器的功能和分类

紫外激光器是一种产生紫外光束的激光器;紫外激光器从结构分为固体紫外激光器(光纤紫外激光器),气体紫外激光器,半导体紫外激光器。

紫外激光最小光斑直径是多少

不汇聚,出瞳直径大约2-3mm ,聚焦可以到微米。

半导体二极管激光器的技术特点和应用

半导体二极管激光器是最实用最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦,其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及

半导体二极管激光器的基本条件

半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件:(1)要产生足够的 粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;(2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;(3)要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。半导体激光器

新突破!借助激光技术制造抗紫外激光损伤的熔石英元件

  近期,中国科学院上海光学精密机械研究所精密光学制造与检测中心魏朝阳研究员团队基于CO2激光的缺陷表征与去除过程,实现了高抗紫外激光损伤熔石英元件制造。相关研究成果发表于Light: Advanced Manufacturing。  紫外激光在熔石英元件上引发的损伤问题,成为限制高功率激光系统进展

欧盟研制成功高效紫外发光二极管

  紫外(UV)辐射灯光通常应用于水净化处理行业和水产养殖场,直接杀死有害细菌和加速有机或无机污染物的化学反应中和过程。但目前市场上使用的紫外辐射灯光源含有汞(Mercury)元素成分,将对人体健康和生态环境造成新的风险。欧盟第七研发框架计划{FP7}中小企业主题提供110万欧元,总研发投入140