磁性纳米粒子创建三维“迷你大脑”

神经元因退行性疾病或创伤而受损后,几乎没有自我修复的能力。因此,恢复神经网络及其正常功能是组织工程领域的一项重大挑战。以色列巴伊兰大学工程学院研究团队利用纳米技术和磁操作克服了这一挑战,创造出可修复受损神经细胞的纳米磁铁,这是创建神经网络的最具创新性的方法之一。研究发表在近日的《先进功能材料》杂志上。 为了建立神经网络,研究人员将磁性氧化铁纳米粒子注入神经祖细胞,从而将细胞转变为独立的磁性单位。然后,他们将可发育为神经元的祖细胞暴露在一些预先调整的磁场中,并远程引导它们在模仿人体组织自然特征的三维多层胶原基质中运动。通过这些磁性操控,他们创造了三维“迷你大脑”,这是一种模仿哺乳动物大脑中的成分和功能的多层神经网络。 胶原蛋白溶液凝固成凝胶后,细胞根据远程施加的磁场保持在适当的位置。在几天内,细胞发育成成熟的神经元,形成延伸和连接,表现出电活动,并在胶原凝胶中生长至少21天。 研究人员表示,这种方法模拟了人脑组织的固有......阅读全文

磁性纳米粒子创建三维“迷你大脑”

神经元因退行性疾病或创伤而受损后,几乎没有自我修复的能力。因此,恢复神经网络及其正常功能是组织工程领域的一项重大挑战。以色列巴伊兰大学工程学院研究团队利用纳米技术和磁操作克服了这一挑战,创造出可修复受损神经细胞的纳米磁铁,这是创建神经网络的最具创新性的方法之一。研究发表在近日的《先进功能材料》杂志上

新法使用磁性纳米粒子治疗癌症

俄罗斯联邦科学和高等教育部新闻中心称,俄罗斯乌拉尔联邦大学科研人员发现了磁纳米粒子在铁磁流体中的一种不同寻常的特性,该特性对于开发新的癌症治疗方法非常重要。乌拉尔联邦大学科研人员阿列克谢·伊万诺夫表示,利用铁磁流体中磁纳米粒子的特性可对抗癌症,例如磁热疗法。该方法在电磁场作用下“加热”患者的身体或器

磁性纳米粒子/磁性纳米颗粒在生物医学方面的应用-三

体内应用:影响体内应用的磁性纳米粒子的2个主要特性是大小和表面功能。超顺磁氧化铁纳米颗粒(Superparamagnetic Iron Oxide,SPIOs)的直径对它们在体内的生物分布有很大影响。直径为10-40nm的颗粒包括超小的超顺磁氧化铁纳米颗粒可以在血液循环中滞留较长时间,它们可

磁性纳米粒子/磁性纳米颗粒在生物医学方面的应用-一

概述磁性纳米粒子/磁性纳米颗粒(Magnetic Nanoparticles, MNPs)是近年来发展迅速且极具应用价值的新型材料,在现代科学的众多领域如生物医药、磁流体、催化作用、核磁共振成像、数据储存和环境保护等得到越来越广泛的应用。在科学家、工程师、化学家和物理学家的共同努力下,纳米技术使得生

磁性纳米粒子/磁性纳米颗粒在生物医学方面的应用-二

磁性纳米粒子的应用磁性纳米粒子在生物医学方面的应用主要分为两大类:体外应用主要包括分离纯化、磁性转染、免疫分析、催化、Magnetorelaxometry、固相萃取等。体内应用可大致分为治疗和诊断两类,治疗方面的应用如热疗和磁靶向药物,诊断方面的应用如核磁共振成像(Nuclear Magenti

磁性纳米粒子可显著加速血栓溶解

  休斯顿卫理公会研究所的研究人员已经研制出了新型磁性纳米粒子,其可以将高浓度的药物直接释放到血栓位置,比直接注射的溶栓速度更快。  得益于在《新英格兰医药杂志》上发表的最近的研究,血管内血栓的恢复有望成为未来治疗局部缺血中风的标准。而这种选择可能比已存在的抗凝血药更好。来自休斯顿卫理公会

纳米粒子有了彩色三维图像

  纳米粒子具有出人意料的奇特属性,比如可用其制造能够弯曲的陶瓷或磁化强度可被控制的材料,但要想通过弄清纳米粒子的结构来研究这些属性,科学家却始终未能如愿。不过,《大众科学》杂志网站2月24日(北京时间)的报道称,一个来自欧洲的联合研究团队现已设法获得了纳米粒子的彩色三维图像

科学家用纳米粒子和大脑“对话”

  电流是大脑的语言,而如今人们可以在没有导线或植入体的情况下和它对话。纳米粒子能通过放电刺激大脑区域,从而提供了治疗脑部疾病的新方式。它甚至有一天可能会带来电脑和人脑之间数据的日常交流。  一种在2004年发现的材料使其成为可能。磁电纳米粒子(MENs)受到外部磁场刺激时会产生电场。如果这种纳米粒

神经科学家发现“迷你大脑”-可保持身体平衡

  北京时间2月2日消息,据科学日报报道,冬天在冰冷的停车场走过且保持直立需要高度集中。但一项最新研究表明当面临这样的挑战时,我们身体试图保持平衡的行为其实是无意识的,而这多亏了脊髓里的一群神经元,后者作为“迷你大脑”能够集合感官信息并对肌肉进行必要的调节以防止身体滑到或摔倒。脊髓里的一群神经元是防

美开发出可远程控制的磁性纳米粒子

  美国科学家开发出一种针对细胞膜的磁性纳米粒子,可以使科学家远程控制细胞离子通道、神经元,甚至能够控制动物行为。该研究结果近期发表在《自然·纳米技术》杂志上。   布法罗大学研究小组所开发的这种磁性纳米粒子大小只有6纳米,很容易在细胞间扩散。研究人员首先将纳米粒子固定在细胞膜上,

脊髓中“迷你大脑”控制平衡

  尽管在打滑的停车场或岩石小道上行进需要全神贯注,但研究最终证实大多数平衡行为可能是一种潜意识的反应。  大脑或许负责小心迈出你的脚步并策划行程,但保持直立的姿势是由脊髓中的一群神经元来控制的。Gizmag网站报道称,尤其是这种“迷你大脑”能分析轻轻碰触产生的感觉。  在小鼠身上进行的试验显示,当

单壁碳纳米管磁性复合纳米粒子分散固相微萃取

四氧化三铁/单壁碳纳米管磁性复合纳米粒子分散固相微萃取-高效液相色谱法测定牛奶中的香精添加剂色谱磁性纳米颗粒作为一种新型的样品前处理萃取材料,因具有大的比表面积和外加磁场下的操控性,被越来越多地应用于样品前处理[ 1,2]。目前,通过修饰和包覆磁性纳米材料表面使其具有吸附特性是制备磁性萃取材料最常用

磁电纳米粒子可传递药物直入大脑

  美国佛罗里达国际大学赫伯特·韦特海姆医学院的研究人员开发出一种可以向大脑传递的磁电纳米粒子,以充分释放抗艾滋病病毒(HIV)药物活化型三磷酸体(AZTTP)的革命性技术。该研究成果刊登在4月17日出版的《自然·通讯》上。   多年来,血脑屏障让研究神经系统疾病的科学家和医生很伤脑筋。血脑屏障是

磁性纳米粒子可提高太阳能电池的性能

  磁性纳米粒子可以提高由聚合物制成的太阳能电池的性能——前提是纳米粒子加入的量合适。这是在DESY的同步辐射光源PETRA III 的X射线研究的结果。慕尼黑技术大学教授彼得•博士穆勒  -Buschbaum为首的科学家发现,纳米粒子质量比约增加百分之一,太阳能电池效率就会更高。他们将在先进能源材

远程控制磁性纳米粒子能够刺激骨骼干细胞再生

  英国科学家在治疗骨创伤、疾病或缺陷等(如骨质疏松)方面取得了重大突破。基尔大学和诺丁汉大学的医学研究人员发现,外层包覆目标蛋白的磁性纳米颗粒可以刺激骨骼干细胞的再生。他们将一种刺激生长的蛋白质分阶段释放,并通过远程控制的纳米粒子产生机械力,维持细胞的再生过程,将干细胞直接递送于损伤区域。  骨伤

苏州医工所实现纳米粒子的三维追踪

  在生命科学、药物研发等领域,纳米粒子定位及追踪技术具有广泛需求。外泌囊泡、病毒和纳米药物载体是生物体内常见的纳米粒子,它们的动态转运是实现胞间通讯、侵袭感染、药物递送等功能的重要过程。因此,实时捕捉这些粒子的胞内外运动在探寻生命活动基本规律及药物转化研究中具有重要意义,这对于阐明疾病发病、病毒动

空气污染让磁性颗粒钻入脑部

   交通烟雾会进入大脑。尾气中的小金属颗粒会飞到鼻腔内并进入大脑,它们在那里或会助推阿尔茨海默氏症的发生。  人们已经知道大脑中已经发现了铁纳米粒子,但是它们被认为来自于人体从食物中自然获取的铁粒子。现在,对其结构进一步研究发现,这些粒子大多数来自于空气污染源,比如交通烟雾和煤炭燃烧。这些发现提供

石墨烯量子点磁性复合纳米粒子分散固相微萃取

石墨烯量子点磁性复合纳米粒子分散固相微萃取-毛细管电泳法测定肉桂酸及其衍生物 肉桂酸及其衍生物是一种重要的香料, 广泛存在于多种中药材中, 是健胃、袪风、抗糖尿病的有效成分[1], 同时具有抗氧化性、抗微生物活性、抗癌性等重要的临床应用价值, 已被广泛应用于医药品和食品添加剂中[2, 3]。由于医药

成都生物所磁性纳米粒子固定化脂肪酶研究获进展

  胰脂肪酶可以催化天然底物油脂水解,生成脂肪酸、甘油和甘油单酯或二酯,是生物体内脂代谢不可缺少的水解酶,在化学工业和制药行业有广泛应用。保持其稳定性、增加酶活力在研发与生产过程中有很重要的意义。固定化酶技术是实现此目标的有效方法之一,在化工领域已经有不少固定化脂肪酶的应用。铁基磁性纳米粒子因具有巨

试管“迷你大脑”可用于研究脑褶皱

  以色列魏兹曼科学院研究人员表示,他们找到在试管中培育微型大脑的方法,这种微型大脑可以产生类似人脑的褶皱,研究它可为分析和医治小头症、癫痫和精神分裂症等疾病开辟新道路。   现实生活中,每3万个婴儿中就约有1个婴儿的大脑生来光滑无褶皱,其成长过程中面临重大疾病的威胁,寿命也较正常婴儿短很多。

迷你大脑是什么?能代替实验动物

  美国研究者们最近以人源细胞为材料开发出了具有部分功能的"微型"大脑。这一人造器官不仅能够帮助科学家们更好地检测药物,还能够节省大量的实验动物成本。  官方数据表明,每年美国的实验动物数量达到了80万只,这并不包括用于农业实验的动物以及数以亿计的大小鼠等等。如果今年这一新型人造大脑能够得以应用,将

迷你大脑”首次具备髓鞘生成功能

  美国一研究小组7月25日在《自然·方法》杂志线上版发表研究论文称,他们开发出一种新方法,利用人类干细胞创造出了第一个具有髓鞘生成功能的脑类器官。这个“迷你大脑”能更精确地模拟人类大脑结构和功能,有助科学家更深入地观察大脑发育过程,研究大脑疾病并测试新药。  所谓类器官,实际上是一种三维细胞培养系

“迷你大脑”首次具备髓鞘生成功能

  美国一研究小组25日在《自然·方法》杂志线上版发表研究论文称,他们开发出一种新方法,利用人类干细胞创造出了第一个具有髓鞘生成功能的脑类器官。这个“迷你大脑”能更精确地模拟人类大脑结构和功能,有助科学家更深入地观察大脑发育过程,研究大脑疾病并测试新药。  所谓类器官,实际上是一种三维细胞培养系统,

迷你大脑是什么?能代替实验动物

  美国研究者们最近以人源细胞为材料开发出了具有部分功能的"微型"大脑。这一人造器官不仅能够帮助科学家们更好地检测药物,还能够节省大量的实验动物成本。   官方数据表明,每年美国的实验动物数量达到了80万只,这并不包括用于农业实验的动物以及数以亿计的大小鼠等等。如果今年这一新型人造大脑能够得以应用

美国科学家试验无线“遥控”深部脑刺激

  美国麻省理工学院科学家13日说,将来也许可通过注入磁性纳米粒子外加一个磁场的方式实施深部脑刺激。与脑中植入永久性刺激电极的传统技术相比,新方法不仅创伤小,且可选择所需刺激的脑细胞,从而治疗特定的神经精神疾病。  这项在小鼠身上验证了疗效的成果发表在新一期美国《科学》杂志上。论文第一作者、麻省理工

激发脑细胞治病?美国科学家试验无线“遥控”深部脑刺激

  美国麻省理工学院科学家13日说,将来也许可通过注入磁性纳米粒子外加一个磁场的方式实施深部脑刺激。与脑中植入永久性刺激电极的传统技术相比,新方法不仅创伤小,且可选择所需刺激的脑细胞,从而治疗特定的神经精神疾病。  这项在小鼠身上验证了疗效的成果发表在新一期美国《科学》杂志上。论文第一作者、麻省理工

苏州纳米所石墨烯三维神经支架研究取得进展

  石墨烯为单层或少层碳原子组成的低维碳纳米材料,具有优异的理化性质,自2004年被发现以来,迅速成为材料科学与凝聚态物理等领域的研究前沿。同时,石墨烯展现出良好生物相容性,在生物医学领域的应用近年来备受关注,已被成功用于细胞成像、药物输运、干细胞工程及肿瘤治疗方面。   中国科学院苏州纳米技术与

日本成功开发世界最小磁性粒子

  据《日刊工业新闻》10月7日报道,东京大学理学系研究科大越慎一教授领导的研究组于10月6日宣布研制成功目前世界最小的纳米(nm)级永磁铁氧体。利用氧化铁形成的磁性粒子成本低,可大量生产,可用于制造存储大数据的大容量磁带和打印机的彩色磁粉。该成果已发表于英国《科学》杂志电子版。  开发成功的磁性粒

微型设备试图解开大脑之谜

原文地址:http://news.sciencenet.cn/htmlnews/2021/3/454864.shtm 研究开发三维多功能神经界面。   图片来源:西北大学 美国西北大学和伊利诺伊大学等机构的研究人员,开发了一项新技术,有望增加人们对大脑发育方式的理解,并为神经创伤和神经

新型大脑监测芯片,可直接在体内溶解

  现在大脑移植的最大危险是排斥反应,免疫系统可能随时发狂,让情况变得更糟糕。不过华盛顿大学的研究人员想改变这种情况,其研究人员开发了一个非常小(比笔尖还小)的可溶解无线大脑传感器。  传感器由硅胶和PLGA(polylactic-co-glycolic acid)做成,可传输颅压和温度等关键数据,