凝血酶形成过程

凝血酶原(Ⅱ,prothrombin)是含582氨基酸残基的酶原,被因子Xa在Arg-Thr及Arg-Ile处切开,切除N?端274个氨基酸残基,余下308个氨基酸残基分成A、B两条肽链,由一个二硫键相连,即为凝血酶(thrombin)。因子Va无酶活性,但可使Xa的活性增强350倍,加速凝血酶的生成。磷脂胶粒与酶(Xa)和底物(凝血酶原)之间借Ca++作为桥相连。因凝血酶原肽链的N?未端含有10个γ?羧基谷氨酸残基。相邻的羧基可与Ca++形成复合体。另一方面,Ca++又可与磷脂中磷酸基结合,这样使Xa和Va与凝血酶原接触在一起,于是Xa将凝血酶原水解为凝血酶。......阅读全文

凝血酶形成过程

凝血酶原(Ⅱ,prothrombin)是含582氨基酸残基的酶原,被因子Xa在Arg-Thr及Arg-Ile处切开,切除N?端274个氨基酸残基,余下308个氨基酸残基分成A、B两条肽链,由一个二硫键相连,即为凝血酶(thrombin)。因子Va无酶活性,但可使Xa的活性增强350倍,加速凝血酶的生

关于凝血酶形成的介绍

  凝血酶原(Ⅱ,prothrombin)是含582氨基酸残基的酶原,被因子Xa在Arg-Thr及Arg-Ile处切开,切除N?端274个氨基酸残基,余下308个氨基酸残基分成A、B两条肽链,由一个二硫键相连,即为凝血酶(thrombin)。因子Va无酶活性,但可使Xa的活性增强350倍,加速凝血酶

凝血酶原是如何形成的?

  血液凝固因子之一,平时储备与血液中,当受外伤出血时,可迅速被血浆运转至伤口处,沉积血小板,形成血咖,以凝血。  存在于血浆中,亦称第Ⅱ因子。是凝血酶的前身物质,血浆中含量为10—15毫克/分升.凝血酶原生成于肝脏,生成时有维生素K参与。  它在凝血过程中变为凝血酶,其大部分可被消耗掉,残存在血清

骨领形成的形成过程

软骨雏形形成后,在其中段周围的软骨膜内出现血管,由于营养及氧供应充分,软骨膜深层的骨祖细胞分裂并分化为成骨细胞,并在软骨表面产生类骨质,成骨细胞自身也被包埋其中而成为骨细胞。类骨质钙化为骨基质,于是形成一圈包绕软骨雏形中段的薄层骨松质,称骨领(bone collar)。骨领表面的软骨膜改称外膜。骨外

日食形成过程

  由于地球轨道与月球轨道有一个5度的夹角,在特定的时间月球会运行至一个特別的位置,令太阳、月球及地球连成一线,这时月球刚好遮掩了太阳的光球,这样便形成一次日食。   一次日全食的过程可以包括以下五个时期:初亏、食既、食甚、生光、复圆。 初亏   初亏 由于月亮自西向东绕地球运转,所以

凝血酶原激活物形成的介绍

  凝血开始到形成凝血酶之前为止,是由内源性和外源性两个系统组成。如图1,右侧为内源性(血液的内在性)凝血机制,为血液的单独过程。血液与异物表面(血管壁的胶原纤维等)接触时,所谓接触因子的第XII因子和第XI因子就被激活,当第XI因子被激活后,它再使无活性的第IX因子活化。另一方面,血小板也在异物表

特化的形成过程

生物的适应性变化区分成生物的进化和特化两种不同的概念。进化即生物逐渐演变,向前发展的过程;特化是指生物的水平发展的物种形成过程,即生物多样性的形成过程,这种区分可以避免许多不必要的争论,把这个新的概念体系和以往人们对生物进化研究的理论相结合。并用该方法重新解释以往人们的研究发现,可以看出生物发展的历

溶酶体的形成过程

  初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:  内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别

血管的形成过程

内皮细胞参与新血管的形成,称为血管生成。血管生成是在胚胎和胎儿器官发育的关键过程中,以及受损区域的修复。该过程是由组织氧减少(缺氧)或氧张力不足引起的,从而导致衬有内皮细胞的血管新发展。血管生成受促进和减少该过程的信号调节。这些促血管生成和抗血管生成信号包括整联蛋白、趋化因子、血管生成素、氧敏感剂、

尿酸的形成过程

核酸是一种高分子化合物,核酸是由无数的核苷酸组成。每一个核苷酸都由三部分组成,一个磷酸分子、一个戊糖(五碳糖)和一个碱基(嘌呤或嘧啶)。生物细胞核中的遗传物质DNA(脱氧核糖核酸)和细胞质中RNA(核糖核酸)由几十万、几百万甚至几千万个核苷酸组成。反过来当核酸氧化分解后的产物之一就是嘌呤,所以说嘌呤

尿酸的形成过程

  核酸是一种高分子化合物,核酸是由无数的核苷酸组成。每一个核苷酸都由三部分组成,一个磷酸分子、一个戊糖(五碳糖)和一个碱基(嘌呤或嘧啶)。生物细胞核中的遗传物质DNA(脱氧核糖核酸)和细胞质中RNA(核糖核酸)由几十万、几百万甚至几千万个核苷酸组成。反过来当核酸氧化分解后的产物之一就是嘌呤,所以说

卵原细胞形成过程

PGCs进一步迁移到未分化性腺的原始皮质中,与其他生殖上皮细胞一起形成原始性索。之后PGCs发生形态学变化转化为卵原细胞,并进入卵原细胞的增殖期(proliferation phase),在该期,卵原细胞通过有丝分裂增加细胞数量。

图式形成的过程

在动物胚胎发育中,最初的图式形成主要涉及胚轴(embryonic axes)形成及其一系列相关的细胞分化过程。胚轴指胚胎的前-后轴(anterior -posterior axes)和背–腹轴(dorsal -ventral axis)。胚轴的形成是在一系列基因的多层次、网络性调控下完成的。

溶酶体的形成过程

  初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:  内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别

胆红素的形成过程

肝、脾、骨髓等单核吞噬细胞系统将衰老的和异常的红细胞吞噬,分解血红蛋白,生成和释放游离胆红素,这种胆红素是非结合性的(未与葡萄糖醛酸等结合)、脂溶性的,在水中溶解度很小,在血液中与血浆白蛋白结合。由于其结合很稳定,并且难溶于水,因此不能由肾脏排出。胆红素定性试验呈间接阳性反应。故称这种胆红素为未结合

钟乳石形成过程介绍

  钟乳石由碳酸钙和其他矿物质的沉积形成。石灰石是一种 碳酸钙岩石,被含有二氧化碳的水分解后,生成碳酸氢钙溶液。这个反应的化学方程式为:[1]  CaCO₃(s) + H₂O(l) + CO₂(aq) → Ca(HCO₃)₂(aq)  水溶液顺岩石而下,直到抵达边缘。如果岩石在洞穴顶部,水将滴下。当

溶酶体的形成过程

初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别溶酶体水

凝血酶原激活物形成始动途径

凝血酶原激活物为Xa、V、Ca2+和PF3(血小板第3因子,为血小板膜上的磷脂)复合物,它的形成首先需要因子x的激活。根据凝血酶原激活物形成始动途径和参与因子的不同,可将凝血分为内源性凝血和外源性凝血两条途径。

凝血酶原激活物形成始动途径

凝血酶原激活物为Xa、V、Ca2+和PF3(血小板第3因子,为血小板膜上的磷脂)复合物,它的形成首先需要因子x的激活。根据凝血酶原激活物形成始动途径和参与因子的不同,可将凝血分为内源性凝血和外源性凝血两条途径。

软骨雏形的形成过程

在长骨将要发生的部位,间充质细胞密集并分化出骨祖细胞,后者继而分化为软骨细胞。软骨细胞分泌软骨基质,细胞也被包埋其中,成为软骨组织。周围的间充质分化软骨膜,于是形成一块透明软骨。其外形与将要形成的长骨相似,被称为软骨雏形(cartilage model)。

SD序列的形成过程

在原核生物中,起始密码子的选择取决于核糖体的小亚基与mRNA模板之间的相互作用。30S亚基与处于紧靠正确起始密码子上游的富含嘌呤的mRNA模板结合,这个区称为SD序列(Shine—Dalgarno sequence),它与16S rRNA 3'端的一个富含嘧啶区互补。在起始复合物形成过程中,

简述溶酶体的形成过程

  初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:  内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别

孢子发生的形成过程

中文名称孢子发生英文名称sporogenesis定  义孢子形成的过程。可通过性孢子的有性繁殖,也可以通过无性孢子的无性繁殖。应用学科细胞生物学(一级学科),细胞分化与发育(二级学科)

染色单体的形成过程

从有丝分裂前期到中期(在有丝分裂后期,着丝点断裂,此时不存在染色单体),染色体沿其长轴发生纵裂。这样被分成的二条染色体各称为染色单体。开始成为一对的染色单体两者并不分开,逐渐它们具有独立的基质,并在其中各自形成二条染色丝。而且染色单体往往出现互相关联的螺旋。这些螺旋的圈数在中期以前逐渐减少,并且着丝

SD序列的形成过程

在原核生物中,起始密码子的选择取决于核糖体的小亚基与mRNA模板之间的相互作用。30S亚基与处于紧靠正确起始密码子上游的富含嘌呤的mRNA模板结合,这个区称为SD序列(Shine—Dalgarno sequence),它与16S rRNA 3'端的一个富含嘧啶区互补。在起始复合物形成过程中,

水合离子的形成过程

水分子作为配体通过配位键与其它质点相结合,而且配位水分子的数目也是由配位键所决定的。对于水合阳离子的形成过程即是:由于水分子是极性分子,存在正负偶极,则溶解后的阳离子和水分子间通过静电引力相互吸引,阳离子吸引水分子的负端,使水分子以配位键配位在阳离子周围形成水合阳离子,如H3O+、[Fe(H2O)6

纤维蛋白形成过程

在凝血酶的作用下,溶于血浆中的纤维蛋白原转变为纤维蛋白单体;同时,凝血酶激活ⅩⅢ为ⅩⅢa,使纤维蛋白单体相互连接形成不溶于水的纤维蛋白多聚体,并彼此交织成网,将血细胞网罗在内,形成血凝块,完成血凝过程。血液凝固是一系列酶促生化反应过程,多处存在正反馈作用,一旦启动就会迅速连续进行,以保证在较短时间内

卵黄囊的形成过程

位于胚体腹方包围在卵黄外的具有丰富血管的膜囊。与胚体中肠相通的紧缩部分称卵黄囊柄。囊壁是由内层的胚外内胚层和外层的胚外中胚层组成。爬行类和鸟类的卵富含卵黄,卵黄囊很大,有贮存、分解、吸收和输送营养物质的功能。随着胚体的增长,卵黄不断被消耗,卵黄囊逐渐萎缩,最终被吸收到体内,融合形成小肠的一部分。低等

双链体形成的过程

中文名称双链体形成英文名称duplex formation定  义在适宜的条件下,核酸分子中互补碱基相互配对形成双链区的过程。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

初级溶酶体的形成过程

内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别溶酶体水解酶的信号斑→将N-乙酰葡糖胺磷酸转移在1~2个甘露糖残基上→在中间膜囊