ATP合成酶的功能介绍

ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体每天进行正常活动所需的ATP量约等于他的体重,如体重70千克的成年人,每天合成的用于机体正常生命活动的ATP量约为70kg。而如此巨量的ATP正是由人体无数的ATP合酶合成的。同时,ATP合成酶也可以催化逆反应,即ATP的水解。因此,从某种意义上来说,ATP合成酶也是一类ATP酶。......阅读全文

ATP合成酶的功能介绍

ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体每天进行

ATP合成酶的功能和分布情况

ATP合成酶,又称FoF₁-ATP酶在细胞内催化能源物质ATP的合成。在呼吸或光合作用过程中通过电子传递链释放的能量先转换为跨膜质子(H+)梯差,之后质子流顺质子梯差通过ATP合酶可以使ADP+Pi合成ATP。ATP合酶(ATP synthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的

ATP合成酶的合成过程介绍

  F₁和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过Fo的氢离子流推动下旋转,每分钟旋转100次,依次与三个β亚基作用,调节β亚基催化位点的构象变化;“定子”在一侧将α3,β3与Fo连接起来。作用之一就是将跨膜质子动力势能转换成力矩(torsion),推动“转子”旋

关于ATP合成酶的组成介绍

  ATP合酶主要由F₁(伸在膜外的水溶性部分) 和Fo(嵌入膜内)组成(图1)。不同物种来源的 ATP合酶含的亚基和数目不尽相同。以牛心线粒体 ATP合酶为例,它的F₁含有仅α3、β3、γ、δ、ε共9 个亚基,Fo含a、b2、C10共13个亚基,F₁与Fo之间有OSCP柄相连接,还有抑制蛋白。线粒

关于ATP合成酶面临的问题分析介绍

  (1)如何获得Fo的精细结构图像;  (2)质子通道c环与蛋白a之间的相互作用机制;  (3)质子流向与马达转向的对应切换机制;  (4)“转子”γ轴的储能机制;  (5)“定子”上的化学循环与“转子”的步进式转动之 问如何实现高效的力学化学耦合;  (6)三个催化位点顺序可逆的构象变换:βo→

关于ATP合成酶的基本信息介绍

  ATP合成酶,又称FoF₁-ATP酶在细胞内催化能源物质ATP的合成。在呼吸或光合作用过程中通过电子传递链释放的能量先转换为跨膜质子(H+)梯差,之后质子流顺质子梯差通过ATP合酶可以使ADP+Pi合成ATP。  ATP合酶(ATP synthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和

什么是ATP合成酶?

ATP合成酶,又称FoF₁-ATP酶在细胞内催化能源物质ATP的合成。在呼吸或光合作用过程中通过电子传递链释放的能量先转换为跨膜质子(H+)梯差,之后质子流顺质子梯差通过ATP合酶可以使ADP+Pi合成ATP。

什么是ATP合成酶?

ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体每天进行

ATP合成酶的合成过程

F₁和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过Fo的氢离子流推动下旋转,每分钟旋转100次,依次与三个β亚基作用,调节β亚基催化位点的构象变化;“定子”在一侧将α3,β3与Fo连接起来。作用之一就是将跨膜质子动力势能转换成力矩(torsion),推动“转子”旋转。

ATP合成酶的分布情况

ATP合酶(ATP synthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的质膜上,参与氧化磷酸化和光合磷酸化,在跨膜质子动力势的推动下合成ATP。分子结构由突出于膜外的F1亲水头部和嵌入膜内的Fo疏水尾部组成。

ATP合成酶的结构组成

ATP合酶主要由F₁(伸在膜外的水溶性部分) 和Fo(嵌入膜内)组成。不同物种来源的 ATP合酶含的亚基和数目不尽相同。以牛心线粒体 ATP合酶为例,它的F₁含有仅α3、β3、γ、δ、ε共9 个亚基,Fo含a、b2、C10共13个亚基,F₁与Fo之间有OSCP柄相连接,还有抑制蛋白。线粒体F₁Fo-

ATP合成酶的合成过程

F₁和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过Fo的氢离子流推动下旋转,每分钟旋转100次,依次与三个β亚基作用,调节β亚基催化位点的构象变化;“定子”在一侧将α3,β3与Fo连接起来。作用之一就是将跨膜质子动力势能转换成力矩(torsion),推动“转子”旋转。

ATP合成酶的合成过程

F₁和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过Fo的氢离子流推动下旋转,每分钟旋转100次,依次与三个β亚基作用,调节β亚基催化位点的构象变化;“定子”在一侧将α3,β3与Fo连接起来。作用之一就是将跨膜质子动力势能转换成力矩(torsion),推动“转子”旋转。

ATP合成酶的合成过程

F₁和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过Fo的氢离子流推动下旋转,每分钟旋转100次,依次与三个β亚基作用,调节β亚基催化位点的构象变化;“定子”在一侧将α3,β3与Fo连接起来。作用之一就是将跨膜质子动力势能转换成力矩(torsion),推动“转子”旋转。

ATP合成酶的前景及展望

21世纪是纳米科技的世纪。高集成、智能化纳米器件的开发必将推动信息技术、生物技术、新材料技术、能源技术及环境技术等的高速发展。纳米技术是国际科技竞争的前沿,也是对未来社会发展、经济振兴、国力增强最有影响力的战略研究领域。人工纳米机器的构建与应用是此前沿领域国际上最具有挑战性的热点课题之一。21世纪也

ATP合成酶的基本信息

ATP合成酶,又称FoF₁-ATP酶在细胞内催化能源物质ATP的合成。在呼吸或光合作用过程中通过电子传递链释放的能量先转换为跨膜质子(H+)梯差,之后质子流顺质子梯差通过ATP合酶可以使ADP+Pi合成ATP。ATP合酶(ATP synthase)广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的

ATP合成酶的基本内容

  ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。  ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体

ATP合成酶的前景及展望

21世纪是纳米科技的世纪。高集成、智能化纳米器件的开发必将推动信息技术、生物技术、新材料技术、能源技术及环境技术等的高速发展。纳米技术是国际科技竞争的前沿,也是对未来社会发展、经济振兴、国力增强最有影响力的战略研究领域。人工纳米机器的构建与应用是此前沿领域国际上最具有挑战性的热点课题之一。21世纪也

概述ATP合成酶的前景及展望

  21世纪是纳米科技的世纪。高集成、智能化纳米器件的开发必将推动信息技术、生物技术、新材料技术、能源技术及环境技术等的高速发展。纳米技术是国际科技竞争的前沿,也是对未来社会发展、经济振兴、国力增强最有影响力的战略研究领域。人工纳米机器的构建与应用是此前沿领域国际上最具有挑战性的热点课题之一。  2

关于腺苷三磷酸酶(ATP酶)合成酶的介绍

  ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。  ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体

ATP合成酶的合成过程中的问题

(1)如何获得Fo的精细结构图像;(2)质子通道c环与蛋白a之间的相互作用机制;(3)质子流向与马达转向的对应切换机制;(4)“转子”γ轴的储能机制;(5)“定子”上的化学循环与“转子”的步进式转动之 问如何实现高效的力学化学耦合;(6)三个催化位点顺序可逆的构象变换:βo→←βL,βL→←βT和β

ATP酶的生理功能介绍

  人体预存的ATP能量只能维持15秒,跑完一百公尺后就全部用完,不足的继续通过呼吸作用等合成ATP。纯净的ATP呈白色粉末状,能溶于水,作为药品可以提供能量并改善患者新陈代谢。ATP片剂可以口服,注射液可供肌肉注射或静脉注射。  能源物质  肌肉中储藏着多种能源物质,主要有三磷酸腺苷(ATP)、磷

关于ATP酶的基本功能介绍

  跨膜ATP酶可以为细胞输入许多新陈代谢所需的物质并输出毒物、代谢废物以及其他可能阻碍细胞进程的物质。例如,钠钾ATP酶(又称为钠/钾离子ATP酶)能够调节细胞内钠/钾离子的浓度,从而保持细胞的静息电位;氢钾ATP酶(又称为氢/钾离子ATP酶或胃质子泵)可以使胃内保持酸化环境。  除了作为离子交换

ATP酶的生理功能

人体预存的ATP能量只能维持15秒,跑完一百公尺后就全部用完,不足的继续通过呼吸作用等合成ATP。纯净的ATP呈白色粉末状,能溶于水,作为药品可以提供能量并改善患者新陈代谢。ATP片剂可以口服,注射液可供肌肉注射或静脉注射。能源物质肌肉中储藏着多种能源物质,主要有三磷酸腺苷(ATP)、磷酸肌酸(CP

ATP合成的部位——ATP酶的相关介绍

  质子反向转移和合成ATP是在ATP酶(腺苷三磷酸酶 adenosine triphosphatase,ATPase)上进行的。叶绿体内囊体膜上的ATP酶也称偶联因子(coupling factor)或CF1-CF0复合体。叶绿体的ATP酶与线粒体、细菌膜上的ATP酶结构十分相似,都由两个蛋白复合

叶绿体ATP酶的组成和功能

催化在叶绿体中合成ATP的酶与线粒体中的ATP酶十分相似。叶绿体中ATP酶也像门把位于类囊膜外侧。存在于不垛叠的类囊膜中。ATP酶可分为CF1和CF0两部分。CF0插在膜中,起质子通道作用,CF1由α3、β3、γ、δ、ε亚基组成,α、β亚基有结合ADP的功能,γ亚基控制质子流动,δ亚基与CF0结合,

液泡质子ATP酶的功能特点

其中液泡膜H+-ATP酶有以下特点:分子量400KD,水解ATP的活性位点在液泡膜的细胞质一侧。H+/ATP计量约为2~3。Cl-、Br-、I-等对该酶有激活作用。该酶可被硝酸盐抑制,但不被钒酸盐抑制。液泡膜H+-ATP酶与跨液泡膜的物质转运有密切关系。液泡膜上的焦磷酸酶能够利用焦磷酸的水解而参与跨

ATP酶的基本功能

跨膜ATP酶可以为细胞输入许多新陈代谢所需的物质并输出毒物、代谢废物以及其他可能阻碍细胞进程的物质。例如,钠钾ATP酶(又称为钠/钾离子ATP酶)能够调节细胞内钠/钾离子的浓度,从而保持细胞的静息电位;氢钾ATP酶(又称为氢/钾离子ATP酶或胃质子泵)可以使胃内保持酸化环境。除了作为离子交换器,跨膜

叶绿体ATP酶的组成和功能

催化在叶绿体中合成ATP的酶与线粒体中的ATP酶十分相似。叶绿体中ATP酶也像门把位于类囊膜外侧。存在于不垛叠的类囊膜中。ATP酶可分为CF1和CF0两部分。CF0插在膜中,起质子通道作用,CF1由α3、β3、γ、δ、ε亚基组成,α、β亚基有结合ADP的功能,γ亚基控制质子流动,δ亚基与CF0结合,

钙ATP酶的功能和特点

中文名称钙ATP酶英文名称Ca2+-ATPase定  义编号:EC 3.6.3.8。肌质网膜钙ATP酶(SERCA)及质膜钙ATP酶(PMCA)的统称。前者催化将钙从肌质主动转运至肌质网囊泡内;后者可将1~2个Ca2+穿膜转移到胞外,同时以1:2的比例将H+转运到细胞内。应用学科生物化学与分子生物学