通道药物学研究

应用电压钳位或单通道电流记录技术,可分别于不同时间、不同部位(膜内侧或外侧)施用各种浓度的药物,研究它们对通道各种功能的影响。结合对药物分子结构的了解,不但可以深入了解药物和毒素对人和动物生理功能作用的机制,还可以从分子水平得到通道功能亚单位的类型和构象等信息。......阅读全文

通道药物学研究

应用电压钳位或单通道电流记录技术,可分别于不同时间、不同部位(膜内侧或外侧)施用各种浓度的药物,研究它们对通道各种功能的影响。结合对药物分子结构的了解,不但可以深入了解药物和毒素对人和动物生理功能作用的机制,还可以从分子水平得到通道功能亚单位的类型和构象等信息。

Nature解答25年药物学谜题

  人员在《自然》(Nature)杂志上报告称他们取得了一项重大突破,了解了一种强效抗生素的自然生成机制。他们的研究发现解答了一个数十年的谜团,并为研究成千上万相似的,并且其中许多有可能是具有医用价值的分子开启了新途径。  该研究小组将焦点放在了几十个具有抗生素特性的化合物上。其中最著名的是乳链菌肽

研究解析心脏钠通道结构

  近日,美国华盛顿大学等科研机构的科研人员在Cell上发表了题为“Structure of the Cardiac Sodium Channel”的文章,解析了心脏钠通道的结构。  电压门控钠通道Na v1.5产生心脏动作电位并启动心跳。该研究中,科研人员解析了Na v1.5在3.2-3.5?分辨

研究发现Bt蛋白“双杀”进攻通道

  4月1日,美国《公共科学图书馆—病理学》发表了Bt杀虫蛋白对棉铃虫的一种新型“双通道”杀虫机制,这一机制由南京农业大学植物保护学院教授吴益东团队发现。  Bt毒素是一种对棉铃虫具有显着活性的杀虫蛋白,我国自1997年开始种植Bt抗虫棉。近年来,田间棉铃虫对Bt杀虫蛋白Cry1Ac抗性个体频率逐渐

生物膜离子通道的研究

在生物电产生机制的研究中发现了生物膜对离子通透性的变化。1902年J.伯恩斯坦在他的膜学说中提出神经细胞膜对钾离子有选择透过性。1939年A.L.霍奇金与A.F.赫胥黎用微电极插入枪乌贼巨神经纤维中,直接测量到膜内外电位差。1949年A.L.霍奇金和B.卡茨在一系列工作基础上提出膜电位离子假说,认为

单通道电流记录技术的研究发展

1980年Sigworth等在记录电极内施加5-50 cmH2O的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而

药物学家谴责葡萄牙一制药公司不当操作

  一家药物公司的灾难性临床试验导致1名参试者死亡,4人患上长期神经病症,并招致广泛批评。事实上,该公司在未使用特定数据的情况下,就决定提高被证明存在致命风险的药物剂量,这导致批评声音愈加汹涌。  2016年12月15日,葡萄牙的这家名为比亚尔公司的一名科学家在一次会议上做了报告,结果显示在决定增加

带动中国干细胞研究走上快速发展通道

  作为一名科学研究人员,“有趣”是他最常挂在嘴边的一个词。因为有趣,他选择了生命科学作为自己的终身职业;因为有趣,他花费8年时间“打磨”一篇论文;因为有趣,他把看似废物的尿液变成了传说中的“不老泉”……  裴端卿,中科院广州生物医药与健康研究院院长、中国细胞生物学学会再生细胞生物学分会会长。在外界

新型阳离子通道TRIC研究取得进展

  钙离子作为第二信使,在细胞生命活动中发挥重要作用。肌浆网/内质网膜上RyR受体和IP3R是钙离子释放的重要通道,而SERCA蛋白是钙库吸收钙离子的重要离子泵。这些蛋白质机器的顺利发挥功能有赖于一系列离子通道的共同参与和协同完成。新型离子通道TRIC在钙离子释放过程中提供反向离子电流,帮助钙离子顺

生物膜离子通道的研究方法

离子通道结构和功能的研究需综合应用各种技术,包括:电压和电流钳位技术、单通道电流记录技术、通道蛋白分离、纯化等生化技术、人工膜离子通道重建技术、通道药物学、基因重组技术及一些物理和化学技术。

新型阳离子通道TRIC研究取得进展

  钙离子作为第二信使,在细胞生命活动中发挥重要作用。肌浆网/内质网膜上RyR受体和IP3R是钙离子释放的重要通道,而SERCA蛋白是钙库吸收钙离子的重要离子泵。这些蛋白质机器的顺利发挥功能有赖于一系列离子通道的共同参与和协同完成。新型离子通道TRIC在钙离子释放过程中提供反向离子电流,帮助钙离子顺

自由基调控离子通道的研究

氧自由基(FORs)是生物体生命活动过程中产生的物质,在动物体中引起许多重要的生物化学及生理学现象。FORs作用于离子通道及受体复合物引发信号级联反应对细胞内代谢活动进行调控。研究发现,伴随着植物生长、激素活动及胁迫应激等不同生命过程,FORs形成并逐渐累积,同时累积的还有胞内钙离子。因此,研究人员

电压门控离子通道研究取得重要进展

  电压门控钠离子通道简称“钠通道”位于细胞膜上,能够引发和传导动作电位,参与神经信号传递、肌肉收缩等重要生理过程。 钠通道的异常会导致诸如痛觉失常、癫痫、心率失常等一系列神经和心血管疾病。另一方面,很多已知的生物毒素以及临床上广泛应用的麻醉剂等小分子均通过直接作用于钠通道发挥作用。因此,钠通道是诸

双通道恒电位仪主要用于哪些研究?

 双通道恒电位仪采用现代化大规模混合集成电路和高性能的模拟放大器,具有噪声低,稳定度高以及体积小的特点。仪器的控制通过独特的高度智能化的计算机用户程序来完成,操作简单,功能多样化。双通道恒电位仪是一款性能的双通道恒电位仪/恒电流仪/阻抗分析仪,支持共用一个参比电极和一个对电极的双工作电极电解池配置(

我科学家填补钠通道结构研究空白

  2月10日,清华大学医学院颜宁研究组在《科学》在线发表了《真核生物电压门控钠离子通道的近原子分辨率三维结构》的研究长文,在世界上首次报道了真核生物电压门控钠离子通道(以下简称“钠通道”)的近原子分辨率的冷冻电镜结构,为理解其作用机制和癫痫、心律失常等相关疾病致病机理奠定了基础。  钠通道是所有动

中科院发表离子通道研究新成果

  双受精是开花植物特有的一种繁殖方式。在授粉过程中,花粉管通过接收和应答胚珠分泌的多种引诱物质将一对精细胞送入胚珠。其中一个精细胞与卵细胞融合产生合子,另一个与中央细胞融合产生胚乳。  已知花粉管导向需要花粉管顶部的钙离子梯度,而钙离子通道是调控钙离子梯度的核心,因此钙离子通道是花粉管导向的关键元

生物膜离子通道的研究方法介绍

  离子通道结构和功能的研究需综合应用各种技术,包括:电压和电流钳位技术、单通道电流记录技术、通道蛋白分离、纯化等生化技术、人工膜离子通道重建技术、通道药物学、基因重组技术及一些物理和化学技术。  1、电压钳位技术  一般而言,膜对某种离子通透性的变化是膜电位和时间的函数。通过玻璃微电极与细胞膜之间

膜片钳在通道研究中的重要作用

  应用膜片钳技术可以直接观察和分辨单离子通道电流及其开闭时程、区分离子通道的离子选择性、同时可发现新的离子通道及亚型,并能在记录单细胞电流和全细胞电流的基础上进一步计算出细胞膜上的通道数和开放概率,还可以用以研究某些胞内或胞外物质对离子通道开闭及通道电流的影响等。同时用于研究细胞信号的跨膜转导和细

研究利用仿生钾离子通道实现单价离子筛分

  向自然学习是永恒的主题。生命中的离子通道具有离子选择性、门控性及整流性,可实现特定离子的选择性跨膜运输。钾离子通道(KcsA)是常见的生命体离子通道,可实现K+/Na+的高效选择性传输,选择比达104。生物钾离子通道具有埃米级的尺寸以及丰富的表面结合位点,每秒可以转运108个钾离子。  纳米结构

合肥研究院多通道光声光谱技术研究取得新突破

  近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所高晓明研究团队副研究员刘锟在多通道光声光谱技术研究方面取得了新的突破,相关研究工作以Multi-resonator photoacoustic spectroscopy 为题发表在Sensors and Actuators B: Chemi

中科院研究人员破解离子通道难题

  中科院上海药物研究所研究员高召兵和中科院生物物理研究所研究员徐涛团队的一项最新合作研究,从全新角度研究并诠释了“一个电压门控钾离子通道需要几个电压感受单元”这一领域内极受关注的问题。相关研究成果近日在线发表于《细胞研究》。  电压门控钾离子通道广泛分布于大脑、心脏、肾脏、胰脏、免疫系统、内分泌系

研究报告建议加快建设沿海运输大通道

  1月22日,由中国人民大学国家发展与战略研究院和中国城市规划设计研究院联合推出的《我国沿海运输大通道规划建设思路》研究报告在中国人民大学逸夫楼发布。该报告提出规划建设沿海运输大通道应该上升为国家战略,并分两个阶段推进。  据了解,《我国沿海运输大通道规划建设思路》是国家智库项目,由中国人民大学国

膜片钳在通道研究中的重要作用介绍

应用膜片钳技术可以直接观察和分辨单离子通道电流及其开闭时程、区分离子通道的离子选择性、同时可发现新的离子通道及亚型,并能在记录单细胞电流和全细胞电流的基础上进一步计算出细胞膜上的通道数和开放概率,还可以用以研究某些胞内或胞外物质对离子通道开闭及通道电流的影响等。同时用于研究细胞信号的跨膜转导和细胞分

膜片钳技术在通道研究中的重要作用

  应用膜片钳技术可以直接观察和分辨单离子通道电流及其开闭时程、区分离子通道的离子选择性、同时可发现新的离子通道及亚型,并能在记录单细胞电流和全细胞电流的基础上进一步计算出细胞膜上的通道数和开放概率,还可以用以研究某些胞内或胞外物质对离子通道开闭及通道电流的影响等。同时用于研究细胞信号的跨膜转导和细

Waters为第九届药物学术会议带来最新的产品及技术

  沃特世(Waters)公司为“第九届全国药物和化学异物代谢学术会议”带来最新的产品及技术   武汉 – 2009年10月24日–第九届全国药物和化学异物代谢学术会议于2009年10月23日-25日在中国武汉举行。沃特世公司应邀向各位药物领域的专家学者展示了全新的SYNAPT™ G2系统。使在坐

中科大在石墨烯纳米通道水输运研究取得突破

  近日,中国科大中科院材料力学行为和设计重点实验室研究团队与诺贝尔物理学奖得主、英国曼彻斯特大学教授安德烈·海姆研究团队合作,在石墨烯纳米通道水输运方面取得重要研究进展。该成果已发表在《自然》上。  据介绍,科研人员利用石墨烯薄的特点提出了一种构筑纳米通道的新方法,把大小不同的石墨烯堆垛起来,形成

苏州纳米所离子选择通道原型器件研究取得新进展

苏州纳米所离子选择通道原型器件研究取得新进展  利用人工纳米管道对特定离子实现高效筛选一直是学术界和产业界的梦想,其直接应用之一就是将海水中的盐离子和水分离;对具有离子选择性的纳米管道的原型器件(即基于纳米微流体的“p-n”结)研究也是对突破传统“p-n”结纳米器件的重要探

清华大学Cell子刊发表离子通道研究新成果

  来自清华大学的研究人员揭示出了机械敏感性阳离子通道Piezo的离子渗透及机械力传导机制,研究结果发布在2月25日的《神经元》(Neuron)杂志上。  清华大学的肖百龙(Bailong Xiao)研究员是这篇论文的通讯作者。其主要研究方向是着重对包括温度激活型的TRP通道和CRAC通道,以及最新

研究揭示钙通道蛋白调控水稻对低温响应分子机制

  近日,中国农业科学院作物科学研究所万建民院士团队系统阐释了钙通道蛋白OsCNGC9调控水稻对低温响应和耐受的分子机制。该研究建立了一条从低温信号感知到钙离子通道激活的低温信号转导途径,填补了植物低温信号转导途径中缺失的重要一环,为利用OsCNGC9 进行水稻抗逆遗传改良提供了理论依据。相关研究成

清华在钠离子通道结构生物学研究取得突破

  在国家自然科学基金创新研究群体项目、重点项目(项目编号:31621092,31630017)等支持下,国家杰出青年基金获得者、清华大学颜宁教授通过结构生物学研究,解析了带有辅助性亚基的真核生物电压门控钠离子通道复合体4.0埃分辨率的结构,并提出了钠离子通道快速失活(fast inactivati