Antpedia LOGO WIKI资讯

液相色谱理论发展简况

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。也称现代液相色谱。......阅读全文

液相色谱理论发展简况

色谱法的分离原理是:溶于流动相 (mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase) 发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。    色谱法最早是由植物学家茨维

液相色谱理论发展简况

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速

液相色谱仪理论发展简况分享,值得收藏!

液相色谱仪开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱仪,此方法柱效低、时间长(常有几个小时)。高效液相色谱仪(High performance Liquid Chromatography,HPLC)是在经典液相色谱仪的基础上,于60年代后期引入了气相色谱理论而迅速

简述液相色谱理论

  液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而

关于液相色谱理论的概述

  液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而

高效液相色谱塔板理论

1.塔板理论的基本假设塔板理论是Martin和Synger首先提出的色谱热力学平衡理论。它把色谱柱看作分馏塔,把组分在色谱柱内的分离过程看成在分馏塔中的分馏过程,即组分在塔板间隔内的分配平衡过程。塔板理论的基本假设为:1)色谱柱内存在很多塔板,组分在塔板间隔(即塔板高度)内完全服从分配定律,并很快达

液相色谱发展简史

早在古代罗马时期,人们已知道将一滴含有混合色素的溶液滴在一块布或一片纸上,通过观察溶液展开产生的同心圆环来分析染料与色素。实际上,这种简单操作已经采用了现代色谱学的基本原理。19世纪中叶,德国化学家Runge对古罗马人的这种方法作了重要的改进,使其具有良好的重现性与定量能力,使盐溶液可在纸上分离;另

液相色谱发展简史

液相色谱发展简史过去普目早在1903年,俄国植物学家 Tswee发表了一篇题为“一种新型吸附现象及其在生化分析上的应用”的论文,提出了应用吸附原理分离植物色素的新方法,并被其命名为色谱法(chromatographyTsweet将碳酸钙装入竖立的玻璃管中,并从顶端倒入植物色素的石油醚浸取液进一步采用

气相色谱和色谱理论的研究与发展

1952年马丁和詹姆斯提出用气体作为流动相进行色谱分离的想法,他们用硅藻土吸附的硅酮油作为固定相,用氮气作为流动相分离了若干种小分子量挥发性有机酸。气相色谱的出现使色谱技术从最初的定性分离手段进一步演化为具有分离功能的定量测定手段,并且极大的刺激了色谱技术和理论的发展。相比于早期的液相色谱,以气体为

简述液相色谱发展历史

  液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而

实验室分析方法--高效液相色谱理论-速率理论

①液相色谱速率方程:1956年,荷兰学者 Van Deemter 等人吸收了塔板理论的概念,并把影响塔板高度的动力学因素结合起来,提出了色谱过程的动力学理论——速率理论。它把色谱过程看作一个动态非平衡过程,研究过程中的动力学因素对峰展宽(即柱效)的影响。后来 Giddings 和 Snyder 等人

纳米液相色谱技术的发展

  1988年Karlsson和Novotny首先用匀浆湿法填充法制备了内径44µm的纳米柱,其长1.95m,用5µmODS填充,获得了理论塔板数达226000块/m的高柱效,其分离性能已超过大口径(4.6mm)的常规液相色谱柱、微孔和毛细管填充柱。  1989年Kennedy和Jorgenson系

实验室分析方法--高效液相色谱理论-塔板理论

①塔板理论介绍:塔板理论是 Martin 和 Synger 首先提出的色谱热力学平衡理论。它把色谱柱看作分馏塔,把组分在色谱柱内的分离过程看成在分馏塔中的分馏过程,即组分在塔板间隔内的分配平衡过程。这个理论假设:色谱柱内存在许多塔板,组分在塔板间隔(即塔板高度)内完全服从分配定律,并很快达到分配平衡

高效液相色谱的起源 发展 应用

高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9´107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。特点1.高压

液相色谱填料基质的发展概述

高效液相色谱的填料可分为无机基质填料和有机基质填料,无机基质填料包括硅胶、氧化铝、氧化锆、羟基磷灰石、氮化物以及活性碳等。此外还有复合物材料,即通过精细调控技术制备的无机-有机球杂交基球,经化学衍生后,制备得对药物分析和筛选很有用的高效、可耐pH2~8、低吸附性的新型填料。1、硅胶无机基质材料中最重

液相色谱的发展变化介绍

液相色谱色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。    1、液固色谱法    使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。分离过程是一个吸附-解吸附的平衡过程。常用的吸附剂为硅胶或氧

实验室分析方法--高效液相色谱理论-色谱分离原理

根据分离机制不同,高效液相色谱可分为四大基础类型:分配色谱、吸附色谱、离子交换色谱和凝胶色谱。①分配色谱法:分配色谱法是四种液相色谱法中应用最广泛的一种。它类似于溶剂萃取,溶质分子在两种不相混溶的液相即固定相和流动相之间按照它们的相对溶解度进行分配。一般将分配色谱法分为液-液色谱和键合相色谱两类。液

怎么查找高效液相色谱柱的理论塔板数

怎么查找高效液相色谱柱的理论塔板数色谱柱可没有固定的理论塔板数。理论塔板数=5.54(保留时间/半高峰宽)2 (2是平方),也就是说理论塔板数必须要进样分析之后,根据样品的半峰宽、保留时间等参数计算出来的。如果你有色谱柱的出厂检验报告,上面应该会有标物分析的图谱。图谱上会有理论板数,拖尾因子等参数。

液相色谱固定相探索完善与发展

1.1 正相色谱 八十年代初,人们使用的正相色谱固定相硅胶和吡啶硫氰酸镍盐的络合物晶体能与芳香族化合物形成包合物用于分离芳香族含氮异构体和胆甾醇晶体。已有人[1]将焦炭吸附剂作为填料和键合硅胶作过比较并研究其热力学机理。具有离子化或非离子化功能团的大孔聚合物也开始应用于液相色谱,这些聚合物在整个酸碱

气相色谱和色谱理论的出现

  1952年马丁和詹姆斯提出用气体作为流动相进行色谱分离的想法,他们用硅藻土吸附的硅酮油作为固定相,用氮气作为流动相分离了若干种小分子量挥发性有机酸。  气相色谱的出现使色谱技术从最初的定性分离手段进一步演化为具有分离功能的定量测定手段,并且极大的刺激了色谱技术和理论的发展。相比于早期的液相色谱,

气相色谱和色谱理论的起源

1952年马丁和詹姆斯提出用气体作为流动相进行色谱分离的想法,他们用硅藻土吸附的硅酮油作为固定相,用氮气作为流动相分离了若干种小分子量挥发性有机酸。气相色谱的出现使色谱技术从最初的定性分离手段进一步演化为具有分离功能的定量测定手段,并且极大的刺激了色谱技术和理论的发展。相比于早期的液相色谱,以气体为

高效液相色谱中理论塔板数的计算方法

理论塔板数=5.54(保留时间/半高峰宽)2 (2是平方)。理论塔板数用于定量表示色谱柱的分离效率,N取决于固定相的种类、性质(粒度、粒径分布等)、填充状况、柱长、流动相的种类和流速及测定柱效所用物质的性质。如果峰形对称并符合正态分布,N可近似表示为N=(tR/σ)2=16(tR)2/W =5.54

高压液相色谱HPLC发展概况、特点及分类

一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobilephase)中的各组分经过固定相时,由于与固定相(stationaryphase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。色谱法最早是由俄国

液相色谱柱技术的发展动态及其影响

在过去的十年中,液相色谱(LC)技术已经有了诸多发展。其中许多发展都是关于对新的色谱柱填充颗粒的研发或者改进,以期实现更高的分离效率;也有关于填充颗粒表面处理的,其目的是影响色谱柱的保留时间和选择性。在新型颗粒设计方面,如sub-2μm粒子和表面多孔粒子,都可以大幅度提高分离速率和改进分离效果。而已

【气相色谱特辑一】速率理论

速率理论是从动力学观点出发,根据基本的实验事实研究各种操作条件(载气的性质及流速、固定液的液膜厚度、载体颗粒的直径、色谱柱填充的均匀程度等)对理论塔板高度的影响,从而解释在色谱柱中色谱峰形扩张的原因。其可用范第姆特(Van Deemter)方程式表示。 范第姆特等人认为使色谱峰扩张的原因是受涡流

气相色谱PK液相色谱

气相和液相是有机检测的两大基本仪器,占据着有机实验室的统治地位,虽然同做有机检测,但就两个仪器本身也有着较大区别,小析姐从以下5个方面进行了比较。气相色谱是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。同为色谱技术之一

气相色谱PK液相色谱

气相和液相是有机检测的两大基本仪器,占据着有机实验室的统治地位,虽然同做有机检测,但就两个仪器本身也有着较大区别,小析姐从以下5个方面进行了比较。 气相色谱是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。同为色谱技

高效液相色谱之高效反相液相色谱(二)

附:色谱柱操作说明,(以迪马公司Diamonsil(TM)柱为例)1. 色谱柱常规参数订货号:Catalog.No.             产品ZL号 Serial No.出厂日期  Date填料  Column Paking     如,Diamonsil(TM)钻石C18 5цm柱规格 Col

液相色谱的分类和高效液相色谱用途

  制备型加压液相色谱,按照色谱柱和样品量的大小,分为:(1)低压液相色谱;(2)中压液相色谱;(3)高压液相色谱;(4)快速色谱。低压、中压与高压液相色谱的压力范围之间会存在一定交叠,没有统一、明确的标准。   1、快速色谱   柱压通常为2bar(或30psi)左右,对于那些容易分离的简单混

高效液相色谱之高效排阻液相色谱

高效液相色谱(High Rerformance Liquid Chromatography, HPLC)又叫高压、高速、近代液相色谱,通常叫做高效液相色谱。它是60年代中期才建立的一种高效快速分离化合物的方法,到了70年代后期才广泛用于蛋白质的分离纯化方面,现已成为分离纯化蛋白质非常有效的方