Antpedia LOGO WIKI资讯

化合物半导体材料的材料优势

化合物半导体集成电路的主要特征是超高速、低功耗、多功能、抗辐射。以GaAs为例,通过比较可得:1.化合物半导体材料具有很高的电子迁移率和电子漂移速度,因此,可以做到更高的工作频率和更快的工作速度。2.肖特基势垒特性优越,容易实现良好的栅控特性的MES结构。3.本征电阻率高,为半绝缘衬底。电路工艺中便于实现自隔离,工艺简化,适合于微波电路和毫米波集成电路。4.禁带宽度大,可以在Si器件难以工作的高温领域工。......阅读全文

化合物半导体材料的材料优势

化合物半导体集成电路的主要特征是超高速、低功耗、多功能、抗辐射。以GaAs为例,通过比较可得:1.化合物半导体材料具有很高的电子迁移率和电子漂移速度,因此,可以做到更高的工作频率和更快的工作速度。2.肖特基势垒特性优越,容易实现良好的栅控特性的MES结构。3.本征电阻率高,为半绝缘衬底。电路工艺中便

化合物半导体材料的性质

多数化合物半导体都含有一个或一个以上挥发性组元,在熔点时挥发性组元会从熔体中全部分解出来。因此化合物半导体材料的合成、提纯和单晶制备技术比较复杂和困难。维持熔体的化学计量比,是化合物半导体材料制备的一个重要条件。

化合物半导体材料的种类

化合物半导体材料种类繁多,性质各异,如Ⅲ-Ⅴ族和Ⅱ-Ⅵ族化合物半导体及其固溶体材料,Ⅳ-Ⅳ族化合物半导体(SiC)和氧化物半导体(Cu2O)等。它们中有宽禁带材料,也有高电子迁移率材料;有直接带隙材料,也有间接带隙材料。因此化合物半导体材料比起元素半导体来,有更广泛的用途。

化合物半导体材料的分类

化合物半导体材料种类繁多,性质各异,如Ⅲ-Ⅴ族和Ⅱ-Ⅵ族化合物半导体及其固溶体材料,Ⅳ-Ⅳ族化合物半导体(SiC)和氧化物半导体(Cu2O)等。它们中有宽禁带材料,也有高电子迁移率材料;有直接带隙材料,也有间接带隙材料。因此化合物半导体材料比起元素半导体来,有更广泛的用途。

化合物半导体材料的应用

化合物半导体材料已广泛应用:在军事方面可用于智能化武器、航天航空雷达等方面,另外还可用于手机、光纤通信、照明、大型工作站、直播通信卫星等商用民用领域 。

化合物半导体材料的概念

化合物半导体材料是由两种或两种以上元素以确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构等半导体性质的称为化合物半导体材料。

化合物半导体材料的定义

化合物半导体材料是由两种或两种以上元素以确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构等半导体性质的称为化合物半导体材料。

化合物半导体材料的制备方法

通常采用水平布里奇曼法(HB)、液封直拉法(LEC)、高压液封直拉法(HPLEC)、垂直梯度凝固法(VGF)制备化合物半导体单晶,用液相处延(LPE)、气相处延(VPE)、分子束外延(MBE)、金属有机物化学气相沉积法(MOCVD)等制备它们的薄膜和超薄层微结构化合物材料。

化合物半导体材料的制备方法

通常采用水平布里奇曼法(HB)、液封直拉法(LEC)、高压液封直拉法(HPLEC)、垂直梯度凝固法(VGF)制备化合物半导体单晶,用液相处延(LPE)、气相处延(VPE)、分子束外延(MBE)、金属有机物化学气相沉积法(MOCVD)等制备它们的薄膜和超薄层微结构化合物材料。

化合物半导体材料的组成介绍

化合物半导体材料是由两种或两种以上元素以确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构等半导体性质的称为化合物半导体材料。

化合物半导体材料的基本性质

多数化合物半导体都含有一个或一个以上挥发性组元,在熔点时挥发性组元会从熔体中全部分解出来。因此化合物半导体材料的合成、提纯和单晶制备技术比较复杂和困难。维持熔体的化学计量比,是化合物半导体材料制备的一个重要条件。

什么是半导体材料?常见半导体材料有哪些?

半导体材料是什么?半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1

半导体材料的概念

半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。

半导体材料的定义

半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。

基于化合物半导体材料高速光开关的研究2

 高速光开关及光开关阵列是全光交换的核心器件. 首先给出全内反射型光波导光开关器件的理论分析模型, 并基于GaAs 材料中的载流子注入效应, 采用GaAs-AlGaAs 双异质结结构,研制了工作波长在1.55 μm 的X 结全内反射型和马赫曾德干涉型两种结构的光开关. 测试结果表明, 开关的消光比均

什么是半导体材料?

半导体材料(semiconductormaterial)是导电能力介于导体与绝缘体之间的物质。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。

半导体热电材料

  半导体热电材料(英文名:semiconductor thermoelectric material)指具有较大热电效应的半导体材料,亦称温差电材料。它能直接把热能转换成电能,或直接由电能产生致冷作用。    1821年,德国塞贝克(see—beck)在金属中发现温差电效应,仅在测量温度的温差电偶

半导体材料的基本特性

自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而降低。

半导体材料的基本特性

自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而降低。

半导体材料的应用介绍

制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上,最高达11个“9”以上。提纯的方法分两大类,

半导体材料的提纯方法

半导体材料的提纯“主要是除去材料中的杂质。提纯方法可分化学法和物理法。化学提纯是把材料制成某种中间化合物以便系统地除去某些杂质,最后再把材料(元素)从某种容易分解的化合物中分离出来。物理提纯常用的是区域熔炼技术,即将半导体材料铸成锭条,从锭条的一端开始形成一定长度的熔化区域。利用杂质在凝固过程中的分

半导体材料的特性参数

半导体材料虽然种类繁多但有一些固有的特性,称为半导体材料的特性参数。这些特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,而且更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下特性上的量的差别。常用的半导体材料的特性参数有:禁带宽度、电阻率、载流子迁移率(载流子即半导体中参加导电的

半导体材料的早期应用

半导体的第一个应用就是利用它的整流效应作为检波器,就是点接触二极管(也俗称猫胡子检波器,即将一个金属探针接触在一块半导体上以检测电磁波)。除了检波器之外,在早期,半导体还用来做整流器、光伏电池、红外探测器等,半导体的四个效应都用到了。从1907年到1927年,美国的物理学家研制成功晶体整流器、硒整流

常见的半导体材料介绍

常见的半导体材料有硅、锗、砷化镓等,硅是各种半导体材料应用中最具有影响力的一种。

半导体材料的早期应用

半导体的第一个应用就是利用它的整流效应作为检波器,就是点接触二极管(也俗称猫胡子检波器,即将一个金属探针接触在一块半导体上以检测电磁波)。除了检波器之外,在早期,半导体还用来做整流器、光伏电池、红外探测器等,半导体的四个效应都用到了。从1907年到1927年,美国的物理学家研制成功晶体整流器、硒整流

常用的半导体材料介绍

常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。化合物半导体分为二元系、三元系、多元系和有机化合物半导体。二元系化合物半导体有Ⅲ-Ⅴ族(如砷化镓、磷化镓、磷化铟等)、Ⅱ-Ⅵ族(如硫化镉、硒化镉、碲化锌、硫化锌等)、 Ⅳ-Ⅵ族

常见的半导体材料特点

常见的半导体材料有硅(si)、锗(ge),化合物半导体,如砷化镓(gaas)等;掺杂或制成其它化合物半导体材料,如硼(b)、磷(p)、锢(in)和锑(sb)等。其中硅是最常用的一种半导体材料。有以下共同特点:1.半导体的导电能力介于导体与绝缘体之间2.半导体受外界光和热的刺激时,其导电能力将会有显著

半导体材料的制备方法

不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上 ,最高达11个“9”以上。提纯的方法分两大类,一

半导体材料的提纯方法

提纯方法可分化学法和物理法。化学提纯是把材料制成某种中间化合物以便系统地除去某些杂质,最后再把材料(元素)从某种容易分解的化合物中分离出来。物理提纯常用的是区域熔炼技术,即将半导体材料铸成锭条,从锭条的一端开始形成一定长度的熔化区域。利用杂质在凝固过程中的分凝现象,当此熔区从一端至另一端重复移动多次

低维半导体材料的特征

实际上这里说的低维半导体材料就是纳米材料,之所以不愿意使用这个词,发展纳米科学技术的重要目的之一,就是人们能在原子、分子或者纳米的尺度水平上来控制和制造功能强大、性能优越的纳米电子、光电子器件和电路,纳米生物传感器件等,以造福人类。可以预料,纳米科学技术的发展和应用不仅将彻底改变人们的生产和生活方式