沸石如何去除自来水中污染物

1、实验材料和方法1.1 实验材料活化沸石:经1mol/L氯化钠活化后的斜发沸石。1.2 分析方法氨氮采用纳氏试剂比色法,用722-分光光度计测定;CODMn采用高锰酸盐指数法。1.3 实验装置实验所用吸附柱是内径直径为45mm、高为300mm的玻璃柱中,填装300g活化沸石。自来水从进水口通过重力自上而下流过吸附柱,流速为为0.4m/h,每隔1小时采样口取水样进行分析。自来水的进口CODMn为2.97mg/L,氨氮浓度为0.055mg/L。图1 吸附装置示意图2、结果与讨论2.1 实验结果表1 动态吸附实验结果2.2 沸石去除有机物实验由图2可以看出,活化沸石对CODMn的去除率很低,说明沸石对自来水中有机物的吸附能力很弱。实验条件下,在吸附开始阶段,最高只有5.4%。当经过4h后,出水CODMn开始增加,到8h吸附饱和。2.2 沸石去除氨氮实验由图3可以看出,活化沸石对氨氮的去除率较高,说明活化沸石对自来水中氨氮的吸附能力很......阅读全文

人造沸石与自然沸石

人造沸石,也叫合成沸石。是人工合成的无机离子交换剂,可用于水的软化、海水脱盐和纯水制造等。有碳酸钠、苛性钾、长石、高岭石等混合并熔融后制得的具有不规则结构的产物。因其功能与天然沸石相似,故称人造沸石,也叫合成沸石。人造沸石是一种人工合成的无机离子交换剂,用于水的软化、海水脱盐和纯水制造等。我国合成沸

沸石是什么

沸石(zeolite)是一种矿石,最早发现于1756年。瑞典的矿物学家克朗斯提(Cronstedt)发现有一类天然硅铝酸盐矿石在灼烧时会产生沸腾现象,因此命名为“沸石”(瑞典文zeolit)。在希腊文中意为“沸腾”(zeo)的“石头”(lithos)。1932年,McBain提出了“分子筛”的概念。

沸石的功效

沸石的作用有:1、在化学蒸馏或加热实验当中常用来防止暴沸,这是因为沸石的结构当中有大量的小孔,可作为气泡的凝结核,使反应液平稳沸腾。可用敲碎至米粒大小的素烧瓷片代替。2、在轻工行业用于造纸、合成橡胶、塑料、树脂、涂料充填剂和素质颜色等。在国防、空间技术、超真空技术、开发能源、电子工业等方面,用作吸附

沸石有什么作用

1、防止暴沸:在化学蒸馏或者加热的过程中,加入沸石防止对过热液体继续加热,会骤然而剧烈地发生沸腾现象,会溅出液体伤害实验研究者。2、干燥剂和吸附分离剂:主要用于国防、空间技术、电子工业等方面。3、建筑方面:作为新型墙体的原料。4、农业方面:用作土壤改良剂,能起保肥、保水、防止病虫害的作用。5、禽畜业

沸石有什么特性

沸石是铝硅酸盐组成各种格架状矿物的总称。它是个庞大的家族,世界上已发现的天然沸石有40种,人工合成的有150种。沸石的颜色一般为浅灰色,有时为肉红色。拿在手上明显地感到比一般的石头轻,这是因为沸石内部充满了微细的孔穴和通道,比蜂房要复杂得多。假如把沸石比作旅馆,那么1立方微米的这种“超级旅馆”内竟有

吸氨沸石如何使用

沸石(Zeolite)火山熔岩形成的一种架状结构的铝硅酸盐矿物。沸石有独特的矿物结构,其结构为三维硅氧四面体和三维铝氧四面体,这些四面体按一定的规律排列成具有一定形状的晶体骨架。沸石的矿物骨架是一开放性的,具有很多的大小均一的通道和空腔(3~11??)。在这些孔穴和通道中吸附着金属阳离子和水分子,这

化学中沸石是什么

【简介】:沸石(zeolite)是一种矿石,最早发现于1756年。瑞典的矿物学家克朗斯提(Cronstedt)发现有一类天然硅铝酸盐矿石在灼烧时会产生沸腾现象,因此命名为“沸石”(瑞典文zeolit)。在希腊文中意为“沸腾”(zeo)的“石头”(lithos)。此后,人们对沸石的研究不断深入。【化学

沸石吸附剂的特点

沸石的特点是具有分子筛的作用,它有均匀的孔径,如3A0、4A0、5A0、10A0细孔。有4A0孔径的4A0沸石可吸附甲烷、乙烷,而不吸附三个碳以上的正烷烃。它已广泛用于气体吸附分离、气体和液体干燥以及正异烷烃的分离。

沸石的粒径是怎么计算

沸石的粒径一般是通过筛分实验来计算的。筛分实验的原理是将沸石样品依据不同的粒径大小分别通过标准筛网进行筛分,然后根据筛网上的孔径和筛分结果计算出各种粒径的沸石的比例和分布情况。具体的操作方法和计算公式如下:1. 准备一组标准筛网。常用的标准筛网规格为ISO 3310-1标准,其中孔径大小从38微米到

人造沸石为什么要老化

人造沸石是一种经过特殊处理的石英砂,它具有良好的耐酸性和耐碱性,可以用于各种环境中的水处理。但是,由于它的结构特性,它的耐久性有限,会随着时间的推移而逐渐老化。老化的主要原因是人造沸石的表面结构发生了变化,使得它的吸附性能受到了影响。当水中的污染物和有机物质附着在人造沸石的表面时,它们会影响人造沸石

概述沸石分子筛的结构

  沸石分子筛材料的广泛应用(例如:吸附分离、离子交换、催化),是与其结构特点密不可分的。例如,吸附分离性能取决于分子筛的孔道和孔体积的大小;离子交换性能取决于分子筛中阳离子的数目、位置及其孔道的可通行性;催化过程中表现出的择形性与分子筛的孔道尺寸、走向相关,而催化反应中的中间产物以及最后产品和分子

概述沸石分子筛的展望

  近年来,沸石分子筛由于具有独特的性能,已经在吸附分离、催化等领域取得了广泛的应用。但是对某些沸石分子筛的性能优劣问题认识不够深入,有的甚至还很肤浅,为了更加有效地发挥沸石分子筛在吸附分离、催化领域应用的优势,要注意以下几个方面的工作:  1)研制价格低廉的沸石分子筛,以降低生产成本为目的;  2

沸石膜实现分子水平的分离

与水形成共沸混合体系的物质分离,通常是采用吸附法或通过加入辅助物料以萃取精馏的方式实现。本文报道了应用沸石膜在分子水平上分离混合物的方法,除了用于工业上乙醇脱水工艺外,还可用于与实验室有关的膜分离行为的研究。 工业生产和实验室中,人们都会经常遇到与水形成的共沸混合物体系,这些混合物需

人造沸石装柱注意事项

人造沸石装柱注意事项如下:1、使用前要清洗去除粉尘,否则这些的粉尘可能暂时会影响水质的清洁度。但建议不要直接用新鲜的自来水冲洗,因为沸石的多孔隙一旦吸附大量自来水中的氯以及漂白粉,在随后放置到过滤器中使用时对水质造成的破坏,因此在使用前需要对其冲洗。2、一般来说,简单清洗难以将沸石多孔隙中的杂物清洗

污水处理用沸石好么

沸石具有极大的比表面积、极强的吸附能力和离子交换能力,对污水中的有机污染物具有吸附和催化降解能力,对重金属等物质污染物具有极强的吸附固化能力,在污水中具有很好的化学稳定性,而且不分解、不变质,不污染水体。可有效去除水中的COD、BOD5、NH3-N、TP、悬浮物等物质可有效去除水中的重金属(镉、铬、

沸石分子筛的结构特点

结构单元首先从最简单的基本结构单元进行研究。通常来讲,沸石分子筛都是一个个四面体通过共用顶点来堆积得到的,所以一个四面体就是一个初级的结构单元(TO4四面体)。例如:对于silicalite-1沸石分子筛来讲,它的初级结构单元是硅氧四面体([Si O4]0),并且这个四面体结构单元呈现电中性,这些硅

沸石分子筛材料的应用特点

沸石分子筛广泛应用(例如:吸附分离、离子交换、催化),是与其结构特点密不可分的。例如,吸附分离性能取决于分子筛的孔道和孔体积的大小;离子交换性能取决于分子筛中阳离子的数目、位置及其孔道的可通行性;催化过程中表现出的择形性与分子筛的孔道尺寸、走向相关,而催化反应中的中间产物以及最后产品和分子筛的孔道维

关于沸石分子筛的性能介绍

吸附性能沸石分子筛的吸附是一种物理变化过程。产生吸附的原因主要是分子引力作用在固体表面产生的一种“表面力”,当流体流过时,流体中的一些分子由于做不规则运动而碰撞到吸附剂表面,在表面产生分子浓聚,使流体中的这种分子数目减少,达到分离、清除的目的。由于吸附不发生化学变化,只要设法将浓聚在表面的分子赶跑,

沸石和有机物加热会怎样

沸石是比较抽象的物质,化学定义为在固液加热反应防止固体受热不均匀的石块。一般沸石是化学性质相对稳定的石灰石或二氧化硅之类的组成的岩石。所以它在有机物质中反应几乎是无化学影响的。只是使加热市受热均匀,防止局部过热引起试管爆裂。一种安全设备。

沸石分子筛的主要应用介绍

干燥及净化领域的应用(1)脱水。利用低硅铝比的沸石分子筛(如 A型,X型等)的极性亲水性,可以进行空气的干燥。另外近年来将乙醇掺入汽油中替代部分汽油受到广泛重视,作为燃料的乙醇要求其中的水含量低于 0.8%,而由于乙醇和水的共沸,使得通过精馏只能得到 95%的乙醇,对于含水量较低的乙醇脱水,沸石分子

沸石去除氨氮和磷的机理

主要有接触时间、沸石粒径、氨氮初始浓度等  沸石对生活污水中氨氮的吸附能力明显低于人工配制氯化铵溶液,氨氮去除率随着沸石投加量的增加而增加,但单位质量沸石的氨氮吸附量却随之减小,吸附过程呈现快速吸附,缓慢平衡的特点。生活污水中悬浮物的存在,会削减沸石对氨氮的吸附能力。不同类型的阳离子和阴离子的加入都

沸石分子筛合成的影响因素

水热合成法是在沸石分子筛合成中最常用和最有效的途径,深入研究分子筛水热合成的主要困难是对分子筛的生成机理了解的还不够清楚。但是,对于沸石分子筛的合成来说无论哪种生成机理,其晶化过程都要经历相同的基本步骤:多硅酸盐与铝酸盐的再聚合、分子筛成核、核生长、分子筛晶体的生长以及引起的二次成核。为了很好的控制

人造沸石柱色谱法适用范围

C18柱C18色谱柱是最常用、每个实验室必备的通用型色谱柱。填料是硅胶基质上键合十八烷基,有较高的碳含量和较好的疏水性,适用于大多数化合物,包括非极性、极性小分子及一些多肽及蛋白质。随着每家色谱柱制造商的研发,C18柱的类型还在不断增加。适用pH范围由原来的2~8,发展到现在1~14,与纯水相的兼容

沸石如何去除自来水中污染物

1、实验材料和方法1.1 实验材料活化沸石:经1mol/L氯化钠活化后的斜发沸石。1.2 分析方法氨氮采用纳氏试剂比色法,用722-分光光度计测定;CODMn采用高锰酸盐指数法。1.3 实验装置实验所用吸附柱是内径直径为45mm、高为300mm的玻璃柱中,填装300g活化沸石。自来水从进水口通过重力

常用吸附剂介绍沸石分子筛

沸石分子筛又称合成沸石或分子筛,其化学组成通式为:[M2(Ⅰ)M(Ⅱ)]O.Al2O3.nSiO2. mH2O式中M2(Ⅰ)和M(Ⅱ)分别为为一价和二价金属离子,多半是钠和钙,n称为沸石的硅铝比,硅主要来自于硅酸钠和硅胶,铝则来自于铝酸钠和Al(HO)3等,它们与氢氧化钠水溶液反应制得的胶体物,经干

概述沸石分子筛合成的影响因素

  水热合成法是在沸石分子筛合成中最常用和最有效的途径,深入研究分子筛水热合成的主要困难是对分子筛的生成机理了解的还不够清楚。但是,对于沸石分子筛的合成来说无论哪种生成机理,其晶化过程都要经历相同的基本步骤:多硅酸盐与铝酸盐的再聚合、分子筛成核、核生长、分子筛晶体的生长以及引起的二次成核。为了很好的

概述沸石分子筛的吸附性能

  沸石分子筛的吸附是一种物理变化过程。产生吸附的原因主要是分子引力作用在固体表面产生的一种“表面力”,当流体流过时,流体中的一些分子由于做不规则运动而碰撞到吸附剂表面,在表面产生分子浓聚,使流体中的这种分子数目减少,达到分离、清除的目的。  由于吸附不发生化学变化,只要设法将浓聚在表面的分子赶跑,

概述沸石分子筛的合成机理

  对于沸石分子筛的形成及其生长机理的深入研究有助于人们更好的设计合成新型沸石分子筛拓扑结构、扩展沸石分子筛材料合成新路线、开发沸石分子筛材料的新性质及新用途。尽管沸石分子筛的发展已经有许多年了,但是对于它的合成机理方面一直未有一个真正的定论。研究分子筛的晶化机理即具有十分重要的理论意义,也对合成新

沸石分子筛的双相转变机理简述

  在人们对于沸石分子筛晶化究竟是通过液相转变机理还是通过固相转变机理争执不清时,八十年代之后,又有科学家提出了双相转变的机理。双向转变机理认为液相转变和固相转变同时存在沸石分子筛晶化过程中,既可以分别发生在两种晶化反应体系中,也可以同时发生在一个体系中。  Gabelica等人从对ZSM-5分子筛

沸石分子筛的结构单元介绍

  首先从最简单的基本结构单元进行研究。通常来讲,沸石分子筛都是一个个四面体通过共用顶点来堆积得到的,所以一个四面体就是一个初级的结构单元(TO4四面体)。例如:对于silicalite-1沸石分子筛来讲,它的初级结构单元是硅氧四面体([Si O4]0),并且这个四面体结构单元呈现电中性,这些硅氧四