AFS2202E型原子荧光光度计常见故障及排除方法

摘 要 简要介绍了北京科创海光仪器有限公司生产的AFS-2202E 型原子荧光光度计在使用过程中的常见故障及排除方法。点击这里进入下载页面:进入下载页面......阅读全文

原子荧光光度计原子化器无火焰怎么解决

  如果原子化器无火焰可能的原因有:点火炉丝上出了问题、进样不正常或者硼氢化钾失效。  如果是点火炉丝出现问题首先要检查点火炉丝的连线和插头,如果都没有问题,那就可能是点火炉丝烧断这时就需要更换点火炉丝;另外,进样不正常或者硼氢化钾失效致使氢化反应不能正常进行也是导致原子化器无火焰的原因。此时,就需

原子荧光光谱仪光度计的组成—原子化器

  原子化器  将被测元素转化为原子蒸气的装置。可分为火焰原子化器和电热原子化器。火焰原子化器是利用火焰使元素的化合物分解并生成原子蒸气的装置。所用的火焰为空气-乙炔焰、氩氢焰等。用氩气稀释加热火焰,可以减小火焰中其他粒子,从而减小荧光猝灭(受激发原子与其它粒子碰撞,部分能量变成热运动与其他形式的能

原子荧光光谱法-气泡冲入原子化器

气泡冲入原子化器,怎么回事? 1. 炉子下面水封水面有问题。气压是否大了。看蠕动泵的管道,以及进液的时候溶液端看看。 2. 水封的问题,里面有可能气压过大,把水封管子拔掉再连上也许就能解决 3. 排废液泵块压力太小,产生的废液不能及时排出,重新调整看看。 4. 1、样品溶液中有机质过多,建议加入消泡

原子荧光光度计

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光度计

 是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩—氢火焰中原子化而形成基态原子。基态原子吸收光源的能量而变成激发态,激发态原子在去活化过程中将吸收的能量以荧光的形式释放出来,此荧光信号的强弱与样品中待测元素的含

AFS681智能化原子荧光光度计

1.产品简介AFS-681是在原有型号基础上减小了光源与PMT的激发角度,既增加了接收荧光信号强度,又降低了背景干扰,从而提高仪器灵敏度。采用半透明耐腐蚀的ABS磁吸结构的仪器前门,避免了外部空气的绕动干扰,同时可在线观察测试过程的化学反应情况。电路上增加分道信号控制模块,双道同时测定时,即使样品中

原子荧光小常识—原子化器无火焰,怎么办?

  随着我国电子、皮革、冶金等工业的发展,重金属污染情况也是愈加严重。为此,国家制定了一系列相关标准来减少重金属污染对人体和环境的伤害。检测砷、汞等重金属元素的仪器有很多,在我国应用比较多的是原子荧光光谱仪(AFS),也叫做原子荧光光度计。北京金索坤技术开发有限公司是市面上*一家只专注原子荧光光谱仪

原子荧光光谱仪和原子荧光光度计

原子荧光光谱仪及原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光谱分析仪等离子体原子化器之ICP原子化器

曾作为原子荧光原子化器的等离子体有电感耦合等离子体 (inductively coupled plasma, ICP)、微波诱导等离子体(micro­wave induced plasma, MIP)和微波等离子体炬(microwave plas­ma touch, MPT)。下面简要地介绍一下这三

了解原子吸收分光光度计原子化器

原子吸收分光光度计一般由四大部分组成,即光源(单色锐线辐射源)、试样原子化器、分光系统(单色仪)和数据处理系统(包括光电转换器及相应的检测装置以及显示系统)。原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气—乙炔火焰。电热原子化器普遍应用的是石墨炉原子化器,因

了解原子吸收分光光度计原子化器

 了解原子吸收分光光度计原子化器原子吸收分光光度计一般由四大部分组成,即光源(单色锐线辐射源)、试样原子化器、分光系统(单色仪)和数据处理系统(包括光电转换器及相应的检测装置以及显示系统)。原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气—乙炔火焰。电热原子化

原子荧光光谱分析仪MPT原子化器

 MPT原子化器微波等离子体炬(MPT)是微波诱导等离子体的一种, 是1985年由金钦汉等提出并进行改进的一种新型光谱光源。MPT 装置的整体结构类似于 ICP 炬管,如下图所示,由三个同心金属管组成,外管的内径为22mm,外径为26mm;中间管的内径为 4.5mm,外径为5.5mm;内管(中心管)

原子荧光光谱分析仪MIP原子化器

 MIP原子化器微波诱导等离子体(MIP)的装置由微波发生器和等离子体炬管两部分组成,其中的微波发生器频率为2450MHz,功率一 般为40〜150W。支持气体为氮气、氯气或氮气。工作时先用高频火花放电装置(Tesla 变压器)点燃等离子体,微波能量通过电感耦合到等离子体炬管(谐振腔),通过谐振腔传

原子荧光光度计原理

是 利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩—氢火焰中 原子化而形成基态原子。基态原子吸收光源的能量而变成激发态,激发态原子在去活化过程中将吸收的能量以荧光的形式释放出来,此荧光信号的强弱与样品

原子荧光光度计优点

原子荧光光度计是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩—氢火焰中原子化而形成基态原子。原子荧光光度计优点:1.非色散系统、光程短、能量损失少2.结构简单,故障率低3.灵敏度高,检出限低,与激发光源强度成正

原子荧光光度计简介

  原子荧光光度计是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩—氢火焰中原子化而形成基态原子。基态原子吸收光源的能量而变成激发态,激发态原子在去活化过程中将吸收的能量以荧光的形式释放出来,此荧光信号的强弱与样

原子荧光光谱仪气路、原子化器的维护注意

目前,原子荧光光谱仪无论从硬件还是操作软件方面都已经做到简单和实用,但仪器使用及维护细节仍特别值得注意,否则也极易造成荧光强度不稳定的现象发生。  气路  外路气体进入仪器后分为屏蔽气和载气两路。载气流量降低时,不能将反应物充分带入原子化器。表现为荧光强度低且不稳定。常见原因有:(1)流路系统管路接

原子荧光光谱分析仪火焰原子化器

火焰原子化器是早期的原子荧光光谱分析中最常用的一种原子化器,其主要原因一方面是这类原子化器装置简单,操作简便;另 一方面是由于早期的原子荧光仪器装置都是由原子吸收仪器改装而 来,而火焰原子化器是原子吸收光谱仪中最通用的原子化器,因此 也就很自然地成了早期原子荧光仪器首选的原子化器。火焰原子化器产生的

原子荧光光谱仪气路、原子化器的维护注意

目前原子荧光光谱仪,无论从硬件还是操作软件方面都已经做到简单和实用,但仪器使用及维护细节仍特别值得注意,否则也极易造成荧光强度不稳定的现象发生。 气路 外路气体进入仪器后分为屏蔽气和载气两路。载气流量降低时,不能将反应物充分带入原子化器。表现为荧光强度低且不稳定。常见原因有:(1)流

原子荧光光度计光谱分类

  按波长和测定方法分为γ射线、X射线、光学光谱和微波,而光学光谱又分为紫外、近紫外、可见、近红外和远红外;  按外形分连续光谱、带光谱和线光谱;  按电磁辐射分为分子光谱、原子光谱、X射线能谱和r射线能谱;  原子光谱主要分为发射光谱、吸收光谱和荧光光谱;

原子荧光光度计的构成

  分成四部分:光源、蒸汽发生系统(断续流动和自动进样)、原子化系统、检测系统。  光源  高强度空心阴极灯:纯度高、不自吸、发光稳定、无光谱干扰、寿命长 (3000mAh),仪器灯电流是峰—峰值。  光路  三个透镜,无色散元件  原子化器  电热屏蔽式石英炉,氩氢火焰  1、炉芯结构  内气--

原子荧光光度计使用步骤

原子荧光:1:开启电脑2:开启氩气,泵电源,主机电源,然后打开电脑桌面上的原子荧光光度计的应用程序,选择所要做的元素,点击“确定”。3:点击“文件”,进行“气路自检”,“断续流动和自动进样器自检”,“空心阴极灯和电路自检”。4:点击“文件”-------“连接数据库”也可以“生成新数据库”----扩

原子荧光光度计的优点

  1、非色散系统、光程短、能量损失少  2、结构简单,故障率低  3、灵敏度高,检出限低,与激发光源强度成正比  4、接收多条荧光谱线  5、适合于多元素分析  6、采用日盲管检测器,降低火焰噪声  7、线性范围宽,3个量级  8、原子化效率高,理论上可达到100%  9、没有基体干扰  10、可

双道原子荧光光度计

  双道原子荧光光谱仪是一种用于化学领域的分析仪器,于2015年12月09日启用。  技术指标  光源为高强度空心阴极灯,双通道;原子化器为低温屏蔽式石英炉;检测器波长160-320nm;配备AS-10自动进样器;砷、汞的检出限分别为≤0.01ng/mL和≤0.001ng/mL,RSD≤0.7%,线

原子荧光光度计的特点

  目前原子荧光光谱分析已经获得了分析人员的公认,是原子吸收光谱分析、原子发射光谱分析的一种有效补充,在国内已获得广泛的应用。在多种元素、多个领域中均建立了相关标准。  仪器结构简单,AFS的谱线相对简单,元素间谱线重叠少,无需色散系统。  灵敏度高,检出限低,AFS的检出限可以达到pg/mL量级。

原子荧光光度计那些事儿

  【前言】原子荧光光度计是为数不多的具有中国自主知识产权的科学仪器,于20世纪70年代后期,由郭小伟先生成功研制。发展30多年来,历经两代人的奋斗与付出,不仅成功地实现商品化,技术日趋成熟完善,还得到了很好的普及和推广:其检出下限改进了3个数量级,被测元素从9个增加到

原子荧光光谱仪光度计的组成—单色器

  单色器  产生高纯单色光的装置,其作用为选出所需要测量的荧光谱线,排除其他光谱线的干扰。单色器有狭缝、色散元件(光栅或棱镜)和若干个反射镜或透镜所组成,色散系统对分辨能力要求不高,但要求有较大的集光本领。使用单色器的仪器称为色散原子荧光光度计;非色散原子荧光分析仪没有单色器,一般仅配置滤光器用来

原子荧光光度计和原子吸收光度计有什么区别

最重要的两点区别:1、测定指标不同:原子荧光光度计测定的是荧光强度;原子吸收光度计测定的是吸光度;2、灵敏度:原子荧光光度计测定结果的灵敏度比原子吸收分光光度法高的多。

原子荧光光度计和原子荧光光谱仪的区别

显然没区别,原子荧光光度计和原子荧光光谱仪是同一种仪器两种不同的名字而已。

原子化器

原子化器的功能是提供能量,使试样干燥、蒸发和原子化。入射光束在这里被基态原子吸收,因此也可把它视为“吸收池”。对原子化器的基本要求是:必须具有足够高的原子化效率;必须具有良好的稳定性和重现性;操作简单;低的干扰水平等。常用的原子化器有火焰原子化器和非火焰原子化器。5.2.2.1 火焰原子化器火焰原子