氢火焰离子化检测器的流动相是什么

氢火焰离子化检测器的流动相是氢气。FID是一种常用于气相色谱仪的检测器,用于检测有机化合物的含量。在FID中,待测样品通过气相色谱柱分离后,进入到FID检测器。在FID中,进样的气体样品与氢气一起通过一个燃烧器,是一个氢气/空气混合燃烧器。在燃烧器中,样品中的有机化合物与氢气发生燃烧反应,产生离子和电子。离子和电子被一个电场加速器收集,并通过测量电流的方式进行检测。因此,氢气在FID中起到了燃烧的作用,并且也是离子和电子的载体。它的流动相是通过FID中的气体流动系统供给的,是通过气瓶提供的高纯度氢气。......阅读全文

氢火焰离子化检测器的流动相是什么

氢火焰离子化检测器的流动相是氢气。FID是一种常用于气相色谱仪的检测器,用于检测有机化合物的含量。在FID中,待测样品通过气相色谱柱分离后,进入到FID检测器。在FID中,进样的气体样品与氢气一起通过一个燃烧器,是一个氢气/空气混合燃烧器。在燃烧器中,样品中的有机化合物与氢气发生燃烧反应,产生离子和

氢火焰离子化检测器特点

  氢火焰离子化检测器简称氢焰检测器,又称火焰离子化检测器(FID: flame ionization detector)。是用于检验氢火焰离子化的机器。  (1) 典型的质量型检测器;  (2) 对有机化合物具有很高的灵敏度;  (3) 无机气体(如N2、CO、CO2、O2)、水、四氯化碳等含氢少

氢火焰离子化检测器的适用范围是什么?

  氢火焰离子化检测器是一种质量型检测器。氢焰检测器对大多数的有机化合物有很高的灵敏度,故对痕量有机化合物的分析很适宜。但对在氢焰中不电离的无机化合物,例如,永久性气体、水、一氧化碳、二氧化碳、氮的氧化物、硫化氢则不能检测。

氢火焰离子化检测器的结构

  (1) 在发射极和收集极之间加有一定的直流电压(100—300V)构成一个外加电场。  (2) 氢焰检测器需要用到三种气体:  N2:载气携带试样组分;  H2:为燃气;  空气:助燃气。  使用时需要调整三者的比例关系,检测器灵敏度达到最佳。  一般根据分离及分析速度的需要选择载气(氮气)的流

氢火焰离子化检测器的原理

1)当含有机物 CnHm的载气由喷嘴喷出进入火焰时,在C层发生裂解反应产生自由基 :CnHm ──→ · CH(2)产生的自由基在D层火焰中与外面扩散进来的激发态原子氧或分子氧发生如下反应:· CH + O ──→CHO+ + e(3)生成的正离子CHO+ 与火焰中大量水分子碰撞而发生分子离子反应:

氢火焰离子化检测器的简介

  (1) 典型的质量型检测器;  (2) 对有机化合物具有很高的灵敏度;  (3) 无机气体(如N2、CO、CO2、O2)、水、四氯化碳等含氢少或不含氢的物质灵敏度低或不响应;  (4) 氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速等特点;  (5) 比热导检测器的灵敏度高出近3个数量级,

氢火焰离子化检测器的原理

  1)当含有机物 CnHm的载气由喷嘴喷出进入火焰时,在C层发生裂解反应产生自由基 :  CnHm ──→ · CH  (2)产生的自由基在D层火焰中与外面扩散进来的激发态原子氧或分子氧发生如下反应:  · CH + O ──→CHO+ + e  (3)生成的正离子CHO+与火焰中大量水分子碰撞而

氢火焰离子化检测器的特点

  氢火焰离子化检测器主要特点是对几乎所有挥发性的有机化合物均有响应, 对所有径类化合物 (碳数≥3) 的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也 几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s) ,基流 -14 -13

氢火焰离子化检测器为什么

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID ),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(

氢火焰离子化检测器的性能特征

FID的特点是灵敏度高,比TCD的灵敏度高约1000倍;检出限低,可达到10~12g/s;线性范围宽,可达10~7;FID结构简单,死体积一般小于1uL,响应时间仅为1ms,既可以与填充柱联用,也可以直接与毛细管柱联用;FID对能在火焰中燃烧电离的有机化合物都有响应,可以直接进行定量分析,是目前应用

氢火焰离子化检测器的性能特征

  FID的特点是灵敏度高,比TCD的灵敏度高约1000倍;检出限低,可达到10~12g/s;线性范围宽,可达10~7;FID结构简单,死体积一般小于1uL,响应时间仅为1ms,既可以与填充柱联用,也可以直接与毛细管柱联用;FID对能在火焰中燃烧电离的有机化合物都有响应,可以直接进行定量分析,是应用

氢火焰离子化检测器的影响因素

  气体流量  包括载气,氢气和空气的流量。  1、载气流量 一般使用N2作为载气,载气流量的选择主要考虑分离效能。对于一定的色谱柱和试样,要找到一个最佳的载气流速,使得柱的分离效果最好。  2、氢气流量 氢气流量与载气流量的比值影响氢火焰的温度以及火焰当中的电离过程。火焰温度太低,组分分子电离数目

氢火焰离子化检测器的性能特征

  FID的特点是灵敏度高,比TCD的灵敏度高约1000倍;检出限低,可达到10~12g/s;线性范围宽,可达10~7;FID结构简单,死体积一般小于1uL,响应时间仅为1ms,既可以与填充柱联用,也可以直接与毛细管柱联用;FID对能在火焰中燃烧电离的有机化合物都有响应,可以直接进行定量分析,是应用

氢火焰离子化检测器的相关介绍

  是根据气体的导电率是与该气体中所含带电离子的浓度呈正比这一事实而设计的。一般情况下,组分蒸汽不导电,但在能源作用下,组分蒸汽可被电离生成带电离子而导电。  工作原理:由色谱柱流出的载气(样品)流经温度高达2100℃的氢火焰时,待测有机物组分在火焰中发生离子化作用,使两个电极之间出现一定量的正、负

氢火焰离子化检测器的影响因素

  气体流量  包括载气,氢气和空气的流量。  载气流量 一般使用N2作为载气,载气流量的选择主要考虑分离效能。对于一定的色谱柱和试样,要找到一个最佳的载气流速,使得柱的分离效果最好。  氢气流量 氢气流量与载气流量的比值影响氢火焰的温度以及火焰当中的电离过程。火焰温度太低,组分分子电离数目低,产生

氢火焰离子化检测器的发展简介

  1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流

氢火焰离子化检测器的工作原理

  1)当含有机物 CnHm的载气由喷嘴喷出进入火焰时,在C层发生裂解反应产生自由基 :  CnHm ──→ · CH  (2)产生的自由基在D层火焰中与外面扩散进来的激发态原子氧或分子氧发生如下反应:  · CH + O ──→CHO+ + e  (3)生成的正离子CHO+与火焰中大量水分子碰撞而

氢火焰离子化检测器的工作原理

氢火焰离子化检测器是以氢气与空气燃烧生成的火焰为能源,使有机物发生化学电离,并在电场作用下产生电信号来进行检测的。在当载气携带被测组分从色谱柱流出后与氢气(必要时还有尾吹气)按照一定的比例混合后一起从喷嘴喷出,并在喷嘴周围空气(助燃气)中燃烧,以燃烧所产生的高温(约2100℃)火焰为能源,被测组分在

气相色谱仪氢火焰离子化检测器的特点

气相色谱仪氢火焰离子化检测器的主要部件是离子室,离子室由收集极、极化极、气体入口和火焰喷嘴组成。一、优点:  1、对碳氢化合物灵敏度高。  2、线性范围宽,基线稳定性好。  3、检测器死体积小,响应快。  4、柱外效应几乎为零。毛细管直接插至喷嘴,消除了柱后峰变宽效应。  5、程序升温时载气流量变化

气相色谱仪氢火焰离子化检测器的特点

气相色谱仪氢火焰离子化检测器的主要部件是离子室,离子室由收集极、极化极、气体入口和火焰喷嘴组成。一、优点:1、对碳氢化合物灵敏度高。2、线性范围宽,基线稳定性好。3、检测器死体积小,响应快。4、柱外效应几乎为零。毛细管直接插至喷嘴,消除了柱后峰变宽效应。5、程序升温时载气流量变化不大。6、检测器耐用

气相色谱仪氢火焰电离检测器离子化机理

对于气相色谱仪氢火焰电离检测器离子化的作用机理,至今还不十分清楚。目前认为氢火焰中的电离不是热电离而是化学电离,即有机物在氢火焰中发生自由基反应而被电离。化学电离产生的正离子(CHO+和H3O+)和电子(e)在外加150~300V直流电场作用下向两极移动而产生微电流,经放大后,记录下色谱峰。氢火焰电

气相色谱仪氢火焰离子化检测器工作原理

气相色谱仪氢火焰离子化检测器(FID)的主要部件是离子室,离子室由收集极、极化极、气体入口和火焰喷嘴组成。在极化极和收集极之间加有一直流电压(50~300V)构成的外加电场。一、氢火焰离子化检测器用到的气体:1、N2:载气。2、H2:燃气。3、空气:助燃气。使用时需要调整三者之间的比例关系,使检测器

气相色谱仪氢火焰离子化检测器概述(一)

气相色谱仪氢火焰离子化检测器(FID)的主要部件是离子室,离子室由收集极(+)、极化极(-)、气体入口和火焰喷嘴组成。在极化极和收集极之间加有一直流电压(150~300V)构成的外加电场。一、用到的气体:1、N2:载气。2、H2:燃气。3、空气:助燃气。使用时需要调整三者之间的比例关系,使检测器灵敏

气相色谱仪氢火焰离子化检测器概述(二)

四、检测条件:1、毛细管柱插入喷嘴的深度:毛细管柱插入喷嘴的深度对改善峰形十分重要。通常毛细管柱插入喷嘴口平面下1~3mm处。若太低,组分与喷嘴表面接触会产生催化吸附,使峰形拖尾。若插入太深,会产生很大噪声,灵敏度下降。  2、气体种类:(1)载气:载气不但将组分带入FID,同时又是氢火焰的稀释剂。

气相色谱仪之氢火焰离子化检测器简介

氢火焰离子化检测器(flameionizationdetector,FID),简称氢焰检测器,它对有机化合物有很高的灵敏度,一般比热导池检测器的灵敏度高几个数量级,能检测至10-12g·s-1的痕量物质,故适宜于痕量有机物的分析。因其结构简单,灵敏度高,响应快,稳定性好,死体积小,线性范围宽,可达1

氢火焰离子化检测器的结构相关简介

  (1) 在发射极和收集极之间加有一定的直流电压(100—300V)构成一个外加电场。  (2) 氢焰检测器需要用到三种气体:  N2:载气携带试样组分;  H2:为燃气;  空气:助燃气。  使用时需要调整三者的比例关系,检测器灵敏度达到最佳。  一般根据分离及分析速度的需要选择载气(氮气)的流

简述氢火焰离子化检测器的性能特征

  FID的特点是灵敏度高,比TCD的灵敏度高约1000倍;检出限低,可达到10~12g/s;线性范围宽,可达10~7;FID结构简单,死体积一般小于1uL,响应时间仅为1ms,既可以与填充柱联用,也可以直接与毛细管柱联用;FID对能在火焰中燃烧电离的有机化合物都有响应,可以直接进行定量分析,是应用

关于氢火焰离子化检测器的结构介绍

  (1) 在发射极和收集极之间加有一定的直流电压(100—300V)构成一个外加电场。  (2) 氢焰检测器需要用到三种气体:  N2 :载气携带试样组分;  H2 :为燃气;  空气:助燃气。  使用时需要调整三者的比例关系,检测器灵敏度达到最佳。  一般根据分离及分析速度的需要选择载气(氮气)

氢火焰离子化检测器的结构及原理

  结构  (1) 在发射极和收集极之间加有一定的直流电压(100—300V)构成一个外加电场。  (2) 氢焰检测器需要用到三种气体:  N2:载气携带试样组分;  H2:为燃气;  空气:助燃气。  使用时需要调整三者的比例关系,检测器灵敏度达到最佳。  一般根据分离及分析速度的需要选择载气(氮

气相色谱仪氢火焰离子化检测器的日常维护

气相色谱仪氢火焰离子化检测器(FID)的日常维护包括氢火焰离子化检测器使用注意事项和清洗等。一、氢火焰离子化检测器使用注意事项:1、尽量采用高纯气源,空气必须经过分子筛充分的净化。2、在较好的N2/H2比和较好空气流速的条件下使用。3、色谱柱必须经过严格的老化处理。4、离子室要注意外界干扰,保证使它