Antpedia LOGO WIKI资讯

研究发现器官大小与铁吸收协同调控机制

植物如何调控种子和器官大小是重要的发育生物学问题,且与作物产量密切相关,是影响农业生产的重要因素。种子和器官大小与营养元素的吸收利用密不可分,但植物如何协同调控种子和器官大小及营养元素吸收利用的分子机理尚不清楚。 近日,中国科学院遗传与发育生物学研究所李云海团队和凌宏清团队,联合植物研究所宋献军团队,发现了SOD7/DPA4-GIF1模块协同调控器官大小与铁吸收利用的重要机制。李云海团队前期研究发现,拟南芥SOD7编码一个B3家族的转录抑制因子NGAL2(NGATHA LIKE2)。过表达SOD7导致小的种子和器官,而同时敲除SOD7及其亲缘关系最近的DPA4/NGAL3能够显著增加种子和器官的大小,表明SOD7和DPA4功能冗余地影响了种子和器官大小。为了进一步探讨SOD7作用的分子机制,本研究筛选了SOD7的互作蛋白,并进一步证实了SOD7可以和转录共激活子GIF1(GRF-INTERACTING FACTOR 1)互......阅读全文

研究发现器官大小与铁吸收协同调控机制

  植物如何调控种子和器官大小是重要的发育生物学问题,且与作物产量密切相关,是影响农业生产的重要因素。种子和器官大小与营养元素的吸收利用密不可分,但植物如何协同调控种子和器官大小及营养元素吸收利用的分子机理尚不清楚。  近日,中国科学院遗传与发育生物学研究所李云海团队和凌宏清团队,联合植物研究所宋献

遗传发育所植物器官大小调控机理研究获进展

  植物器官大小是重要的产量性状,器官大小不仅受环境影响,而且受到严格的遗传调控。到目前为止,对器官大小调控机制的认识甚少。   中科院遗传与发育生物学研究所李云海研究组此前的研究鉴定出一个种子和器官大小的调控基因DA1,它编码一个泛素受体。本研究在da1-1突变体背景下进行诱变,筛

Wnt和TGFβ信号协同调控与个体大小相关的生物行为

  多细胞动物中生长和模式化(patterning)的协调,造成了组织、器官乃至个体形态和大小的差异。组织的大小与功能是有关系的,但是协调大小和功能之间关系的机制仍不清楚。  2019年8月15日,来自美国Stowers研究所的Alejandro Sánchez Alvarado团队在Nature上

遗传发育所等揭示植物拟分生细胞调控器官大小的机制

  植物拟分生细胞(meristemoid cells)是具有干细胞活性的一类细胞,分布在分化和扩展的叶子表皮等细胞之间。据统计大约一半的叶子表皮细胞来源于拟分生细胞,但是植物拟分生细胞如何决定器官大小的分子机理几乎不知道。中国科学院遗传与发育生物学研究所李云海研究组与汪迎春研究组、比利时Dirk

徐宇君组报道精准调控小鼠个体与器官大小的作用机制

  众所周知,自然界中各种动物个体有着不同体型大小,例如非洲象体型庞大,成年后体重可达5吨,而同样是哺乳动物的成年小鼠,体重却难以超过50克,这主要是由动物身体中细胞数目的差异导致的,但是动物个体的大小细胞是怎样被调节?在同一个种的不同个体也有大小差别,这种细小的个体差异是否存在遗传学的控制还是主要

高脂饮食破坏 器官间的协同

   近日,顶尖学术期刊《细胞》上刊登了一项重量级的研究。来自加州大学尔湾分校的一支团队发现,人体内的多个重要器官与组织之间会积极交流,产生协同效应。而高脂饮食会破坏这种协同。   研究表明,在某些情况下,和生物节律有关的蛋白质,能够感知细胞里的能量水平,这会影响到一些代谢通路。另外,生物钟能从

遗传发育所在植物种子和器官大小调控机理研究中取得进展

  植物种子和器官大小是一个重要的农艺性状,其调控机制也是一个基本的发育生物学问题。然而,植物是如何知道并决定其器官最终大小的分子机理目前并不清楚。   中科院遗传与发育生物学研究所李云海研究组最近鉴定出一个具有较小的种子、较短的花器官和叶片的突变体stn1。基因克隆表明,STN1编

协同调控的定义和作用特点

也称协同调控。在原核生物中,功能相关的基因通常一起被调控。例如,在大肠杆菌中,合成色氨酸的五个基因作为一组基因进行表达。这五种肽在代谢途径中一起发挥作用,并且在生产色氨酸中都需要。从来没有任何理由去表达其中的一个基因而不表达其他基因,因此他们总是在一起表达。

水稻籽粒大小调控研究获进展

  水稻是重要的粮食作物。其籽粒大小同产量密切相关。目前已经克隆了一些控制水稻种子大小的重要基因,但水稻种子大小调控的分子机理仍不清楚。中国科学院遗传与发育生物学研究所李云海团队与浙江省农科院王俊敏团队以及中国科学院大学柴团耀团队合作,揭示了OsMPK1在水稻籽粒大小调控上起重要作用,对提高作物产量

水稻籽粒大小调控研究获进展

水稻是重要的粮食作物。其籽粒大小同产量密切相关。目前已经克隆了一些控制水稻种子大小的重要基因,但水稻种子大小调控的分子机理仍不清楚。中国科学院遗传与发育生物学研究所李云海团队与浙江省农科院王俊敏团队以及中国科学院大学柴团耀团队合作,揭示了OsMPK1在水稻籽粒大小调控上起重要作用,对提高作物产量有潜

Nature:细胞大小究竟如何调控细胞增殖

  近日,来自美国斯坦福大学的研究人员在著名国际学术期刊nature上发表了一项最新研究进展,他们在出芽酵母中发现在细胞分裂之前,周期蛋白Cln3的合成速率随细胞尺寸变化,而转录抑制因子Whi5的浓度会随细胞生长而得到稀释,通过这种机制实现了细胞尺寸对增殖的调控。  细胞的大小是影响细胞内所有生物合

原子吸收光度大小的因素有哪些

火焰原子吸收法: 1、溶液浓度,浓度高,吸光度大; 2、燃烧器长度10cm与入射光平行,光程最大,改变角度(光程减小),吸光度减小; 3、改变进样的提升量,就改变吸光度的大小; 4、燃烧器高度改变,就改变吸光度的大小; 5、改变燃助比,就改变吸光度的大小

上海生科院揭示水稻籽粒大小调控机制

  中国科学院上海生命科学研究院植物生理生态研究所国家基因研究中心团队在水稻控制籽粒大小的分子机制研究方面取得重要进展。他们经过多年的努力成功克隆和鉴定了一个控制水稻粒长与千粒重的关键基因GLW7,并深入研究了其分子机理及在水稻遗传改良中的作用,相关研究论文于3月7日在线发表在Nature Gene

水稻籽粒大小可调控?学者发现细胞分裂素信号调控机制

  近日,中国农业科学院作物科学研究所水稻分子设计技术与应用创新团队与国内其他科研单位合作,鉴定到一个细胞分裂素信号新组分PPKL1,发现PPKL1通过引诱但不接纳细胞分裂素磷酸转移蛋白AHP2上的磷酸基团,干扰信号传递效率,从而抑制水稻籽粒大小,并以此建立了一套水稻籽粒大小精准设计系统。9月22日

研究发现茉莉酸调控根器官再生的机理

  植物固着生长并通过协调生长发育过程和抗性反应从而应对环境变化带来的胁迫与损伤。植物受到由生物或非生物胁迫引起的物理伤害以后,可以通过激活生长过程完成组织和器官再生。然而,人们尚不清楚植物遭受机械损伤以后激活器官再生的分子机理。  在特定逆境胁迫下,植物通过茉莉酸途径抑制主根生长而促进侧根发生(S

生物所揭示非编码RNA协同调控固氮机制

  近日,中国农业科学院生物技术研究所微生物功能基因组创新团队林敏课题组在水稻根际联合固氮施氏假单胞菌中发现新型非编码RNA参与协同调控固氮酶活性,为进一步揭示生物固氮网络调控机制奠定了重要理论基础。相关研究成果在线发表于《应用环境微生物学(Applied and Environmental Mic

4项元素协同作用 激活人体代谢调控钥匙

6月7日,瓯江实验室首席科学家李校堃、资深研究员穆萨·穆罕默迪、特聘研究员陈高帜团队在国际期刊《自然》发表最新研究成果。该团队在国际上首次解析了内分泌形成纤维细胞生长因子(FGF)激活受体的分子机制,为糖尿病、慢性肾病和脂肪肝等代谢性疾病治疗药物的研发提供了重要结构基础。FGF家族包括18个分泌蛋白

逆境之战:调控钾/氮协同转运分子机制被发现

近几年以来,中国在植物学领域实现了质的飞跃,其植物学研究成果占到了全球的20%以上,随着国家对于基础科学研究的重视,一大批优秀的成果脱颖而出。本期介绍的这篇论文就是重要代表之一。 中国农业大学武维华院士/王毅教授课题组、李继刚教授课题组和德国明斯特大学Jörg Kudla教授课题组合作完成了拟南芥转

我科学家发现水稻籽粒大小关键调控基因

  谷粒大小不仅是决定水稻产量的要素之一,而且对谷粒的外观品质有着重要影响。近日,中科院院士、华中农业大学张启发课题组在谷粒大小和粒型的调控研究方面取得重大进展。研究证实了水稻中GS3基因控制水稻籽粒大小,发现了该基因中控制籽粒大小的关键区域,命名为OSR(Organ Size Regulation

影响原子吸收吸光度大小的因素有哪些

光源强度,PMT的放大倍数,光路衰减小,原子化效率

水稻籽粒大小和叶夹角的协同改良研究取得新进展!

  叶夹角是水稻株型的一个重要决定因子,较小的叶夹角有利于提高种植密度和光合效率,进而提高产量。但是,长期的遗传育种学研究显示,叶夹角的改良往往会产生一些负面效应,尤其会造成籽粒变小,千粒重降低。如何在降低叶夹角的同时保持或增大籽粒,是水稻高产育种面临的一个关键问题。  中国科学院遗传与发育生物学研

研究发现水稻籽粒大小和重量调控的重要途径

  水稻是世界上重要的粮食作物,籽粒大小和粒重是影响水稻产量的重要决定因素。目前已经克隆了一些控制水稻种子大小的重要基因,但水稻种子大小调控的分子机理仍不清楚,进一步阐明水稻籽粒大小的调控机理对于提高水稻产量具有重要的指导意义。  近日,中国科学院遗传与发育生物学研究所李云海团队、中国科学院大学柴团

植物所等发现新水稻谷粒大小调控开关

  水稻是我国三大主粮之一,其谷粒大小和形状(粒型)决定稻米的产量和外观品质。近十年来,水稻粒型调控机理研究取得了较大的进展,许多重要粒型基因被克隆和研究。但目前已知的多数粒型基因难以归类到已知调控途径,报道的信号通路信息也呈现片断化的特点,极大限制了对粒型调控分子机理的认识,制约了其在作物高产优质

遗传发育所等发现水稻种子大小调控机制

  水稻是我国的主要粮食作物之一,粒重、穗粒数和有效穗数是水稻产量三要素。因此水稻的籽粒大小影响着水稻的产量。目前已经克隆了一些控制水稻种子大小的重要基因,但水稻种子大小调控的分子机理仍不清楚。中国科学院遗传与发育生物学研究所李云海团队与姚善国团队、田志喜团队以及中国科学院大学柴团耀团队合作,揭示了

植物所揭示水稻籽粒大小表观遗传调控新机制

  水稻籽粒大小决定稻米的产量和外观品质,并受多个数量性状位点(QTLs)的控制;其中,编码组蛋白乙酰化酶的GRAIN WEIGHT 6a(GW6a)是水稻籽粒大小和产量的正向调节因子。目前对于GW6a依赖的基因调控网络尚不清楚。在拟南芥中,泛素受体DA1通过调控细胞增殖期来控制种子和器官的大小,然

科学家发现茉莉酸调控根器官再生的机理

  植物固着生长并通过协调生长发育过程和抗性反应从而应对环境变化带来的胁迫与损伤。植物受到由生物或非生物胁迫引起的物理伤害以后,可以通过激活生长过程完成组织和器官再生。然而,人们尚不清楚植物遭受机械损伤以后激活器官再生的分子机理。  在特定逆境胁迫下,植物通过茉莉酸途径抑制主根生长而促进侧根发生(S

Nature Aging:揭示调控灵长类器官衰老的表观转录组机制

m6A是目前已知的真核细胞mRNA上最常见的一类化学修饰,其建立、读取和擦除分别受到相应甲基化酶(writer)、结合蛋白(reader)以及去甲基化酶(eraser)的动态可逆调控。研究表明,m6A能够通过调节mRNA的剪接、出核、稳定性以及翻译等生命周期活动,参与调控机体的诸多生理或病理进程,包

物对牡丹花器官数量变异遗传网络调控

  花器官作为有花植物的重要繁殖系统,是物种形成与多样化的关键。在人类对植物驯化栽培和育种过程中,花器官数量决定其产量、品质及育种成败。牡丹(Paeonia suffruticosa)属于芍药科芍药属植物,其花形态多样。出于对重瓣花的偏爱,人们在漫长的驯化栽培和选择过程中对花瓣数目进行了持续选择,导

研究揭示单基因调控水稻产量与抗性的协同作用机制

  记者9月7日从四川农业大学获悉,四川农业大学与中国科学院遗传与发育生物学研究所、加州大学戴维斯分校的科学家研究发现了水稻理想株型建成的关键基因IPA1在水稻稻瘟病抗病过程中的作用,打破了单个基因不可能同时实现增产和抗病的传统观点。  这一科研成果可以为水稻高产高抗育种提供重要理论基础和实际应用新

研究团队发现玉米籽粒发育与灌浆协同调控中心因子

  近期,中国科学院分子植物科学卓越创新中心研究员巫永睿课题组在Plant Cell上,在线发表了题为The B3 Domain-Containing Transcription Factor ZmABI19 Coordinates Expression of Key Factors Require