科学家揭示外源核酸诱导的原核生物短Ago蛋白系统发挥功能的分子机理

RNA介导的转录后基因调控在生命个体抵御外源入侵的过程中起到重要作用。Argonaute(Ago)蛋白是存在于古菌、细菌和真核生物中的一种蛋白。它为非编码小RNA提供锚位点,达到降解靶基因或者抑制翻译的目的。对比真核生物的Ago,原核生物的Ago展现出多样性,分为三个家族——长A型、长B型和短Ago亚型。原核长A和长B型Ago包括四个结构域,即N端结构域、PAZ结构域、MID结构域和PIWI结构域。这四个结构域在Ago蛋白系统发挥功能的过程中发挥重要的功能,缺一不可。原核短Ago不具备N端和PAZ结构域(图1a),因此原核短Ago在发挥功能时必须招募一些其他蛋白如SIR2和TIR蛋白,补偿N端和PAZ结构域的功能。与真核生物相比,原核生物的Ago不仅可以介导由DNA引导的靶向DNA干扰,而且可以介导由RNA引导的靶向RNA或者DNA干扰。因此,原核生物的Ago展示出更多的功能,如靶向干扰噬菌体入侵和外源质粒DNA扩增、阻碍外源基......阅读全文

Argonaute(AGO)蛋白的结构和功能

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

关于AGO蛋白质的基本介绍

  Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。P

什么是Argonaute(AGO)?

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

RNA干扰相关知识Argonaute(AGO)

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

AGO2基因编码功能及结构描述

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含一个PAZ结构域和一个PIWI结构域它可能与dicer1相互作用,在短干扰RNA介导的基因沉默中发挥作用已发现该基因编码不同亚型的多个转录变体。[由RefSeq提供,2009年9月]This gene e

AGO3基因编码功能及结构描述

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含PAZ结构域和PIWI结构域,可能在短干扰RNA介导的基因沉默中发挥作用该基因位于1号染色体上,由Argonaute 4和真核翻译起始因子2C,1等家族成员串联而成。已鉴定出两个编码不同亚型的转录变体[由

AGO2基因的结构特点及作用

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含一个PAZ结构域和一个PIWI结构域它可能与dicer1相互作用,在短干扰RNA介导的基因沉默中发挥作用已发现该基因编码不同亚型的多个转录变体。

Nature:外源核酸诱导的原核生物短Ago蛋白系统发挥功能的分子机理

  RNA介导的转录后基因调控在生命个体抵御外源入侵的过程中起到重要作用。Argonaute(Ago)蛋白是存在于古菌、细菌和真核生物中的一种蛋白。它为非编码小RNA提供锚位点,达到降解靶基因或者抑制翻译的目的。对比真核生物的Ago,原核生物的Ago展现出多样性,分为三个家族——长A型、长B型和短A

AGO3基因突变与药物因子介绍

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含PAZ结构域和PIWI结构域,可能在短干扰RNA介导的基因沉默中发挥作用该基因位于1号染色体上,由Argonaute 4和真核翻译起始因子2C,1等家族成员串联而成。已鉴定出两个编码不同亚型的转录变体[由

AGO3基因的结构特点和功能作用

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含PAZ结构域和PIWI结构域,可能在短干扰RNA介导的基因沉默中发挥作用该基因位于1号染色体上,由Argonaute 4和真核翻译起始因子2C,1等家族成员串联而成。已鉴定出两个编码不同亚型的转录变体。

AGO2基因突变与药物因子介绍

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含一个PAZ结构域和一个PIWI结构域它可能与dicer1相互作用,在短干扰RNA介导的基因沉默中发挥作用已发现该基因编码不同亚型的多个转录变体。[由RefSeq提供,2009年9月]This gene e

陈大华研究组JCB解析piRNAs发生机制

  小分子piRNAs(Piwi-interacting RNAs)在抑制转座子活性和维持基因组稳定性起重要作用,但其发生和调控的分子机制仍不清楚。果蝇生殖细胞为研究这一机制提供了良好的模型。果蝇生殖细胞中piRNAs 的发生包括初级加工和次级加工两个过程,其中piRNAs次级加工途径,又称乒乓循环

动物所揭示小分子piRNAs的发生和调控机制

  小分子piRNAs(Piwi-interacting RNAs)在抑制转座子活性和维持基因组稳定性方面起重要作用,但其发生和调控的分子机制仍不清楚。果蝇生殖细胞为研究这一机制提供了良好的模型。果蝇生殖细胞中piRNAs 的发生包括初级加工和次级加工两个过程,其中piRNAs次级加工途径,又称乒乓

Cell-Rep:KRAS可以被“沉默”

  大约三分之一的人类癌症中存在HRAS、KRAS或NRAS原癌基因突变。其中KRAS突变最为常见,其突变导致人类很多致命癌症的发生,包括胰腺癌和肺癌等。一直以来,科研工作者都致力于找到药物能抑制KRAS本身或KRAS信号通路中的关键分子。但到目前来看,这个问题仍没有得到有效地解决。  最近在Cel

上海生科院发明一种高效安全的新型RNAi载体

  10月12日,国际学术期刊Nature Communications 在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所国家蛋白质科学中心(上海)吴立刚研究组的最新研究成果:Ribozyme-enhanced single-stranded Ago2-processed inter

癌症相关的基因突变类型及临床解释-AGO2

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含一个PAZ结构域和一个PIWI结构域它可能与dicer1相互作用,在短干扰RNA介导的基因沉默中发挥作用已发现该基因编码不同亚型的多个转录变体。

癌症相关的基因突变类型及临床解释--AGO3

该基因编码Argonaute家族的一个成员,在RNA干扰中起作用。编码的蛋白质是高度碱性的,包含PAZ结构域和PIWI结构域,可能在短干扰RNA介导的基因沉默中发挥作用该基因位于1号染色体上,由Argonaute 4和真核翻译起始因子2C,1等家族成员串联而成。已鉴定出两个编码不同亚型的转录变体。

原核短Ago在病毒入侵前后有啥变化?研究揭示

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/509647.shtm中国科学院物理研究所/北京凝聚态物理国家研究中心丁玮团队和朱洪涛团队与中国医学科学院北京协和医学院病原生物研究所崔胜团队合作,通过高分辨冷冻电镜技术与自主研发的自动化结构解析策略,在

贺福初院士、周钢桥研究员发表癌症新成果

  来自军事医学科学院放射与辐射医学研究所的研究人员,通过遗传关联研究和功能分析调查了AGO2单核苷酸多态性(SNPs)与鼻咽癌风险之间的关系。这项研究发布在本月的《BMC Cancer》杂志上。  国际著名细胞生物学家、遗传学家贺福初(Fuchu He)院士和军事医学科学院放射与辐射医学研究所的周

植物内源激素油菜素内酯负调控miRNA靶基因的翻译抑制

  植物体内非常重要的小分子非编码RNA——miRNA在翻译水平介导的靶标基因抑制是一种非常保守的基因沉默机制。在模式植物拟南芥中,miRNA被装载到其效应分子ARGONAUTE1(AGO1)蛋白上,以碱基互补配对的方式与其靶标mRNA结合,最终诱导细胞质中靶基因mRNA的切割,或者在内质网中抑制靶

细菌Argonaute蛋白生成和加载DNA引导链的分子机制

  近期,《分子细胞》(Molecular Cell)杂志在线发表了中国科学院生物物理研究所王艳丽课题组及其合作者关于细菌Argonaute(Ago)蛋白独立生成和加载DNA引导链的最新研究成果,题为Autonomous Generation and Loading of DNA Guides by

上海交大Hepatology文章解析癌转移新机制

  来自上海交通大学医学院、上海人类基因组研究中心的研究人员在新研究中证实,Argonaute2通过上调黏着斑激酶(focal adhesion kinase,FAK)的表达,促进了肝癌转移。相关研究论文发表在4月22日国际著名肝脏疾病杂志Hepatology(最新影响因子11.665)上。

细菌Argonaute蛋白生成和加载DNA引导链的分子机制被发现

  3月2日,《分子细胞》(Molecular Cell)杂志在线发表了中国科学院生物物理研究所王艳丽课题组及其合作者关于细菌Argonaute(Ago)蛋白独立生成和加载DNA引导链的最新研究成果,题为Autonomous Generation and Loading of DNA Guides

我国冷冻电镜再发Nature-三维结构解析免疫机制

10月2日,《自然》杂志在线发表了我国科学家的一项关于免疫系统如何发挥作用的重要成果。通过海量的实验与计算,来自中国科学院物理所、中国医学科学院等单位的研究人员,成功解析与原核短Ago系统相关的高分辨率三维蛋白结构,同时彻底弄清楚了原核短Ago系统在病毒入侵前后所发生的结构变化。原核短Ago中辅酶I

我国学者揭示Agos蛋白指导导向DNA链切割靶标DNA链机制

  近日,《Proceedings of the National Academy of the Sciences of the United States of America,PNAS》杂志在线发表题为“Two symmetric arginine residues play distinct

研究揭示Agos蛋白指导导向DNA链切割靶标DNA链的机制

  2018年12月27日,《美国国家科学院院刊》(PNAS)杂志在线发表题为Two symmetric arginine residues play distinct roles in Thermus thermophilus Argonaute DNA guide strand-mediated

中科院Cell-Res揭示DNA修复新机制

  来自中科院北京基因组研究所、清华大学的研究人员证实,Ago2通过同源重组促进了Rad51招募以及DNA双链断裂修复。这一研究发现发表在3月25日的《细胞研究》(Cell Research)杂志上。   中科院北京基因组研究所的杨运桂 (Yun-Gui Yang)研究员和清华大学的戚益军(Y

原核生物和真核生物Argonaute酶的主要区别

  Argonaute蛋白(Ago)是一类庞大的蛋白质家族,是组成RISC复合物的主要成员。在进化过程中演变出了各种亚科蛋白。这些亚科蛋白可以识别各种不同类型的小RNA分子,从而在各种小RNA沉默途径中发挥作用。  酶有明确的活性位点,与底物分子复杂地结合。这通常伴随催化反应发生前的酶构象变化。对A

首次!黄超兰:单碱基分辨率和单细胞层面的精准鉴定

  2021年6月10日,北京大学医学部精准医疗多组学研究中心黄超兰团队,与中国科学院生物物理研究所薛愿超团队、广东省第二人民医院孙青原团队,合作在Nature Cell Biology上发表了题为“Global profiling of RNA-binding protein targetsite

浙大:RNA编辑阻止RISC识别靶标mRNA

  MicroRNAs(miRNAs)结合Ago形成RNA诱导沉默复合体,通过沉默靶mRNA调控基因表达。miRNA的RNA编辑可能影响miRNA的加工,Ago复合物的组装,以及靶mRNA的结合。然而,组装进Ago复合物的被编辑的miRNA的功能,还没有被深入研究过。  浙江大学生命科学学院章晓波教