科普在线质谱仪是什么?

在线质谱仪是一种用于工业生产流程中的质谱仪,主要用于工艺过程的在线气体分析及其他相关的检测。 结构与功能: 在线质谱仪通常包括进样系统、离子源、质量分析器、离子检测器、真空系统和数据处理系统。其中,进样系统、离子源、质量分析器和离子检测器是质谱仪的核心部分。 1进样系统:在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。 2.离子源:是使样品电离产生带电粒子束的装置,离子源是质谱仪的心脏部分。由于离子化所需要的能量随分子不同差异很大,因此,对于不同的分子应选择不同的电离方法 质量分析器:在离子源中产生的不同动能的正离子,在加速器中加速,增加能量后在质量分析器将带电离子根据其质荷比加以分离。 4.离子检测器:检测器接收和检测分离后的离子,并对其输出信号进行放大。 5.真空系统:在质谱仪中凡是有样品分子和离子存在的区域必须处于真空状态,以降低背景和减少离子间或离子与分子间碰撞所产生的干扰......阅读全文

在线气体质谱仪的工作流程

     在线气体质谱仪的工作流程如下:气体样品→进样系统→离子源→质量分析器→离子检测器→数据处理及控制系统,离子源、质量分析器、离子检测器必须在真空下工作(10–4pa)。进样系统--可用卡套直接把样品毛细管接到反应器,通过持续不断的进样、快速的检测,实时在线检测样品气体的种类和含量的变化。进样

在线气体质谱简介

    质谱仪是通过对样品离子质荷比的测定来分析其组成的一类仪器。实验室质谱仪种类很多,从应用的角度可以分为有机、无机、气体、同位素质谱仪几类。有机质谱是质谱仪中数量最多,应用最广的一类,在线气体质谱也是质谱大家庭中不可或缺的一种。在线气体质谱广泛的应用于残余气体分析(RGA)、催化研究(TPR、T

在线气体质谱特点介绍

    在线气体质谱广泛的应用于残余气体分析(RGA)、催化研究(TPR、TPD、TPO)、环境尾气分析、气体纯度分析、反应动力学等。     在线气体质谱仪的工作流程:气体样品→进样系统→离子源→质量分析器→离子检测器→数据处理及控制系统,离子源、质量分析器、离子检测器必须在真空下工作(10–4p

实验室分析仪器主要的质谱仪器介绍

自1912年第一台质谱仪问世后,经历了一百多年,质谱技术获得长足的发展,目前已成为分析化学不可缺少的工具。质谱法所特有的优点是:超微量(样品取量为微克级);快速(数分钟之内完成一次测试);能同时提供有机样品的精确分子量、元素组成和碳骨架及官能团结构信息;既能进行定性分析又能进行定量分析;能最有效地与

质谱仪的基本组成及其作用

质谱仪的基本组成包括进样系统、离子源、质量分析器、检测器、真空系统和计算机控制与数据处理系统等。1、进样系统:将样品送进离子源。2、离子源:将样品电离,得到带有样品信息的离子。3、质量分析器:将离子源产生的离子按 m/z 大小分离开。4、检测器:用以测量和记录离子流强度,得出质谱图。5、真空系统:保

质谱仪的基本组成及其作用

质谱仪的基本组成包括进样系统、离子源、质量分析器、检测器、真空系统和计算机控制与数据处理系统等。  1、进样系统:将样品送进离子源。  2、离子源:将样品电离,得到带有样品信息的离子。  3、质量分析器:将离子源产生的离子按m/z大小分离开。  4、检测器:用以测量和记录离子流强度,得出质谱图。 

高效液相色谱仪的质谱仪检测器解析

一、质谱仪检测器结构:         由进样系统、离子源、质量分析器、检测器、真空系统和计算器控制及数据处理系统等组成。   1、进样系统:将样品送进离子源。   2、离子源:将样品电离,得到带有样品信息的离子。   3、质量分析器:将离子源产生的离子按m/z大小分离开。  

高效液相色谱仪的质谱仪检测器解析

高效液相色谱仪的质谱仪检测器简单地说就是称量离子质量的称,即把不同质荷比的离子分离并记录,从而测定化合物的分子量、推测分子式和分子结构等。一、质谱仪检测器结构:由进样系统、离子源、质量分析器、检测器、真空系统和计算器控制及数据处理系统等组成。1、进样系统:将样品送进离子源。2、离子源:将样品电离,得

液相色谱仪的质谱仪检测器解析

液相色谱仪的质谱仪检测器简单地说就是称量离子质量的称,即把不同质荷比的离子分离并记录,从而测定化合物的分子量、推测分子式和分子结构等。一、质谱仪检测器结构:  由进样系统、离子源、质量分析器、检测器、真空系统和计算器控制及数据处理系统等组成。  1、进样系统:将样品送进离子源。  2、离子源:将样品

实验室分析仪器质谱仪器的基本结构

质谱分析法主要是通过对样品离子质荷比的分析而实现对样品进行定性和定量的一种分析方法,实现质谱分析的仪器称为质谱仪器。一台质谱仪器通常可分为进样系统、离子源、质量分析器、离子检测器、数据处理系统、真空系统等几大部分,如图2-1所示。进样系统按要求把需要分析的样品装入或送入离子源。离子源是用来使样品通过

实验室质谱仪的类别及组成结构

实验室质谱仪种类很多,从应用的角度可以分为有机、无机、气体、同位素质谱仪几类。有机质谱是质谱仪中数量较多,应用较广的一类,在线气体质谱也是质谱大家庭中不可或缺的一种。在线气体质谱广泛的应用于残余气体分析(RGA)、催化研究(TPR、TPD、TPO)、环境尾气分析、气体纯度分析、反应动力学等。质谱仪的

实验室质谱仪的分类和结构介绍

实验室质谱仪种类很多,从应用的角度可以分为有机、无机、气体、同位素质谱仪几类。有机质谱是质谱仪中数量较多,应用较广的一类,在线气体质谱也是质谱大家庭中不可或缺的一种。在线气体质谱广泛的应用于残余气体分析(RGA)、催化研究(TPR、TPD、TPO)、环境尾气分析、气体纯度分析、反应动力学等。质谱仪的

实验室质谱仪的类别及组成结构有哪些?

将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。质谱仪是通过对样品离子质荷比的测定来分析其组成的一类仪器。实验室质谱仪种类很多,从应用的角度可以分为有机、无机、气体、同位素

质谱分析仪结构及功能

  一般包括进样系统、离子源、质量分析器、离子检测器、真空系统和数据处理系统[1]。  1. 进样系统:将样品导入质谱仪。可分为直接进样和通过接口两种方式。  1) 直接进样:在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。  2) 通过接口技术进样:目前质谱进样系统发

科普小知识——在线质谱仪的基本组成

  在线质谱仪的基本组成  在线质谱仪的基本组成一般包括检测系统、真空系统、电控系统和数据处理系统几个部分。检测系统通常由进样系统、离子源、质量分析仪和离子检测器组成,参见图1。  样品通过进样系统进入质量分析仪,被导入离子源,在离子源中被电离成正离子或负离子,离子束按质荷比大小由质量分析仪分开,被

质谱仪的基本组成及气质联用仪种类

质谱仪的基本组成包括进样系统、离子源、质量分析器、检测器、真空系统和计算机控制与数据处理系统等。1、进样系统:将样品送进离子源。2、离子源:将样品电离,得到带有样品信息的离子。3、质量分析器:将离子源产生的离子按m/z大小分离开。4、检测器:用以测量和记录离子流强度,得出质谱图。5、真空系统:保证离

质谱检测仪的系统是有几条

 质谱分析仪是按照离子的质荷比(m/z)不同,分离不同分子量的分子,测定分子量并进行成分和结构分析的一种精密、高效的多功能分析仪器。  一般包括进样系统、离子源、质量分析器、离子检测器、真空系统和数据处理系统。  1. 进样系统:将样品导入质谱仪。可分为直接进样和通过接口两种方式。  1) 直接进样

质谱法概述

质谱法是通过将试样转化为运动的气态离子并按质荷比m/z大小进行分离记录的分析方法,所得结果即为质谱图。根据质谱图提供的信息,可以进行多种有机物及无机物的定性定量分析、复杂化合物的结构分析、样品中各种同位素的测定及固体表面结构和组成分析。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比m/z实

质谱法概述

质谱法是通过将试样转化为运动的气态离子并按质荷比m/z大小进行分离记录的分析方法,所得结果即为质谱图。根据质谱图提供的信息,可以进行多种有机物及无机物的定性定量分析、复杂化合物的结构分析、样品中各种同位素的测定及固体表面结构和组成分析。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比m/z实

科普上海舜宇恒平在线质谱仪与在线气相色谱仪的比较及应用

  随着现代工业的迅速发展,对生产中自动化的要求越来越高,在线分析与过程控制被广泛关注在线分析不仅可以给出反应过程数据,并能根据这些数据对生产过程进行控制.达到提高生产效率和产品质量、降低生产成本的最终目的。在线质谱仪和在线气相色谱仪均是用于过程分析的高效能仪器,可分离多种组分,可同时监测多个位点,

一种过程质谱仪的进样接口装置的制作方法

本实用新型涉及质谱分析技术领域,更具体地,涉及一种过程质谱仪的进样接口装置。背景技术:质谱分析法是通过测定样品离子的质量m与电荷z之比(简称质荷比,m/z)来进行分析的一种分析方法。被分析的气体样品首先要离子化,然后利用不同离子在磁场或电场中运动轨迹的不同,把离子按质荷比分开而得到质谱图,进而得到样

ICP质谱仪应用原理和基本组成

ICP质谱仪zui重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法

ICP质谱仪应用原理和基本组成

ICP质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法

质谱仪的组成

质谱仪一般由真空系统、进样系统、离子源、质量分析器、检测器、数据处理系统六部分组成,图 1 为质谱仪的结构示意图。

气相色谱质谱联用仪的仪器组成

(一)、真空系统:2级真空:机械泵和涡轮分子泵机械泵一般时前级真空,也就是在机械泵把真空降到一定水平后才启动涡轮分子泵,以保护分子泵。所以仪器从大气压到真空合适的状态一般要经过一段时间的。(二)、进样系统:从分离装置来的组分(气体或者液体)或者从直接进样杆进液体或者固体样品。(三)、离子源离子源:

质谱仪的组成部分介绍

  质谱仪主要由真空系统、进样系统、离子源、质量分析器、检测器等部分组成。  真空系统:离子源的真空度要保持在10-3~10-5Pa,质量分析器的真空度要保持10-6Pa。  进样系统:可以分为直接进样和色谱进样。单组分、高沸点的液体样品可以采用直接进样。色谱进样一般是液质联用或气质联用等仪器,适用

实验分析仪器有机质谱仪器组成与结构

有机质谱仪作为一种可以有效提供有机化合物分子量及分子结构信息的分析仪器已被广泛应用于有机合成、药物分析、生命科学、食品安全、环境分析及公共安全等诸多领域根据用途不同,质谱仪可以分为:生物有机质谱仪、无机质谱仪、同位素质谱仪等。根据质量分析器种类,质谱仪可以分为:双聚焦质谱仪、四极杆质谱仪、离子阱质谱

赛默飞ICPMS质谱仪的样品导入方法介绍

  赛默飞ICP-MS质谱仪的样品导入方法介绍   赛默飞ICP-MS质谱仪作为现代分析行业中的重要仪器,在众多领域发挥着越来越重要的作用,广泛应于环保行业、电子行业、纺织品行业、石油化工、香精香料行业、医药行业、农业及食品安全等领域。   赛默飞ICP-MS质谱仪的工作原理:   样品通过进

质谱仪的组成及介绍

质谱仪的组成:真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。1、真空系统作用,是减少离子碰撞损失。若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等

质谱仪五大组成结构及作用

质谱仪的组成:真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。1、真空系统作用,是减少离子碰撞损失。若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等