ACAIC2023“生物光学成像技术创新论坛”报告专家风采前瞻

随着科技的不断发展,生物光学成像技术已经成为生物医学 领域研究中的重要手段。这项技术能够让生物学家们深入了解细 胞和组织的结构、功能及其变化,从而帮助他们探索机体生理和 病理的本质。近几年来我国生物光学成像相关产品研发的科研机 构与公司发展迅速。新技术、新产品、新部件、新应用以较快的 速率被不断地推出,市场需求也呈现了较快的发展面貌。为了更 好地宣传生物光学成像技术及其仪器创新进展及挑战,仪器技术 热点、前沿应用与方法创新,ACAIC 2023 同期将举行“生物光学成像技术创新论坛”,诚挚邀请关心生物光学成像技术创新进 展的业内外人士参会。 组织机构 上海市高端科学仪器技术创新中心; 北京大学药学院天然药物及仿生药物国家重点实验室 报告日程 报告人简介 纪伟,中国科学院生物物理研究所研究员,博士生导师。主要从事超分辨成像仪器技术研究。主持中国科学院仪器研制项目,承担科技部重点研发计划项目课题,发展出纳米分辨率的光......阅读全文

光学成像与光声成像对比

小动光学活体成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究

光学成像的原理

光学成像原理简介一个成像系统主要包含以下几个要素:·视场:能够在显示器上看到的物体上的部分·分辨率:能够最小分辨的物体上两点间的距离·景深:成像系统能够保持聚焦清晰的最近和最远的距离之差·工作距离:观察物体时,镜头最后一面透镜顶点到被观察物体的距离·畸变:由镜头所引起的光学误差,使得像面上各

什么是光学相干成像

  光学相干断层成像术(optical coherence tomography,OCT)是一种能对生物组织浅表微结构进行断层成像的新技术,我们对时域光学相干断层成像术(time domain optical coherence tomography,TDOCT)与傅立叶域光学相干断层成像术(fo

光学成像上的对比

传统的光学显微镜与激光共聚焦显微镜在光学成像上的对比,由两者的成像可以很清楚的看出激光共聚焦显微镜在高倍率的成像下的景深高的优势,在1000倍的放大率下,传统的光学显微镜的视场内有很多已经模糊的离焦光信号被采集如图3-1-(a),而激光共聚焦在整个视场内都可以获得质量相当好的图像信号如图3-1-(b

TEM的光学与成像设备

快速的电子开关进行打开、改变和关闭。改变的速度仅仅受到透镜的磁滞效应的影响。电子光学设备        通常,TEM包含有三级透镜。这些透镜包括聚焦透镜、物镜、和投影透镜。聚焦透镜用于将最初的电子束成型,物镜用于将穿过样品的电子束聚焦,使其穿过样品(在扫描透射电子显微镜的扫描模式中,样品上方也有物镜

光学显微镜成像原理

学生用的显微镜是反像,上下左右与实际物体正好相反。物镜放大率乘以目镜放大率就是总放大倍数。

光学显微镜成像原理

  显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。光学显微镜成像原理:       光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影

光声成像:-光学和超声成像的完美结合

光声成像: 光学和超声成像的完美结合---Endra小动物光声成像系统在肿瘤,血管,脑科学等领域的应用光声成像是近年来发展起来的一种无损医学成像方法,它结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性,可以提供高分辨率和高对比度的组织成像。光声技术的原理是当一束光照射到生物组织上以后,生物

活体光学成像技术之光学活体成像前动物脱毛的必要性

在上几期的文章中,我们分别介绍了荧光成像与生物发光成像的比较、荧光蛋白、荧光染料的挑选方法。当大家选择了合适的标记方法并建立成像模型(药物注射、肿瘤注射等)后,需要对实验动物进行活体成像观察。在成像前,对实验动物进行完全脱毛是非常重要的步骤,直接关系能否获得高质量的成像数据。今天将为大家详细介绍成像

光学显微镜的成像原理

基本原理在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(submicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructures)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。

光学显微镜的成像原理

光学显微镜的原理光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。经显微镜到人眼的物体都成倒立放大的虚像。反光镜用

光学显微镜的成像原理

光学显微镜的成像研究和设计,是以人眼可见光光线(人们常说的:可见光)的物理现象为基础进行的。光学显微镜的分辨力受可见光波长的限制,质量较好的光学显微镜的分辨极限约为0.2μm。小于光波波长的物体因衍射而不能成像。为了观察到更细微的物体和结构,科学家采用更短波长的电子射线来代替光波,设计出了电子显微镜

光学成像的原理及特点

光学成像是利用折射、反射等手段将物的信息再现。成像是几何光学研究的核心问题之一。实像与虚像、实物与虚物1,物和像都是由一系列的点构成的,物点和像点一一对应。2,实物、实像的意义在于有光线实际发自或通过该点,而虚物、虚像仅仅是由光的直线传播性质给人眼造成的一种错觉,实际上并没有光线经过该点。3,物和像

西安光机所光学成像研究取得进展

  2月18日出版的美国光学学会旗下期刊Optics Express 同时刊登了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利研究组的三篇研究论文。  在第一篇题为Large-scale 3D imaging of insects with natural color 的文章

动物活体光学成像的应用进展

随着对亚细胞结构和功能、分子生理和病理、细胞间和细胞内信号通路研究的深入,人类对疾病和对生命本质的认识不断被追朔到蛋白质、基因水平。在上个世纪发展起来的CT、MRI、PFT、超声等宏观影像技术已经远不能满足对活体环境内细微生命过程的探询。组织切片和免疫染色能够部分解释一些生物现象,但是需要研究对象与

西安光机所光学成像研究取得进展

  2月18日出版的美国光学学会旗下期刊Optics Express 同时刊登了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利研究组的三篇研究论文。  在第一篇题为Large-scale 3D imaging of insects with natural color 的文章

活体生物光学成像技术的应用

  作为一项新兴的分子、基因表达的分析检测技术,在体生物光学成像已成功应用于生命科学、生物医学、分子生物学和药物研发等领域,取得了大量研究成果,主要包括: 在体监测肿瘤的生长和转移、基因治疗中的基因表达、机体的生理病理改变过程以及进行药物的筛选和评价等。   1、在体监测肿瘤的生长和转移  

光学随机共振——强大的弱白光成像

  中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究员刘红军课题组在光学随机共振弱光图像重构方面取得新进展,于11月4日在美国物理学会(APS)旗下期刊Physical Review Applied 上以White-light image reconstruction via s

组织的光学特性及其成像基础(二)

8.组织的吸收特性 组织的吸收是各个分子成分共同作用的结果。当光子的能量与分子的能级间隔匹配时,分子吸收光子。在短波长区(光子能量大),这些跃迁是电子跃迁。紫外区的重要吸收体包括DNA,芳香族氨基酸(色氨酸、酪氨酸),蛋白质,黑色素和卟啉(包括血红蛋白、肌红蛋白维生素B12以及细胞色素c)。 光穿透

显微镜光学构件及成像原理

 (一) 折射和折射率   光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。         (二) 透镜的性

组织的光学特性及其成像基础(一)

生物组织的光学特性,影响着光在组织中的传输,也是医学光谱和成像诊断的基础。影响光在生物组织中传播的三个物理过程是反射和折射(reflection and refraction)、 散射(scattering)、吸收(absorption)。这三个过程分别用以下参数来描述:折射率、 散射系数、吸收系数

光学显微镜成像原理是什么

光学显微镜成像原理是凸透镜成像原理,显微镜有两组镜头,物镜成倒立放大的实像,目镜则将物镜成的像再次成像,只不过成的是放大的虚像,因此经过两次成像后,显微镜下看到的物像是倒立放大的虚像。显微镜下要获得清晰的物像,必需严格按照操作规程进行操作,先降低镜筒,用粗准焦螺旋反方向缓慢上升镜筒的过程中注视目镜,

《光学通信》:突破单像素成像对快速运动物体成像瓶颈

  记者6月20日从中国科学院合肥物质科学研究院了解到,该院安徽光机所王英俭课题组提出了一种抗运动模糊快速运动物体的单像素成像新方法,在利用单像素成像所具有的宽光谱、高灵敏优势的同时,突破了单像素成像对快速运动物体成像应用的瓶颈限制。这项研究改变了人们一直以来认为单像素成像只适合于对静止或缓慢移动物

光学类分析仪器的设计灵感

摘要:光学类分析仪器的设计灵感一,使用者的需求是根本 光学类分析仪器的设计灵感二,仪器维修者的经验是关键 光学类分析仪器的设计灵感一,使用者的需求是根本我们曾发明了一种紫外荧光一机多的仪器(主要用于高压液相色谱仪),其灵感就是来自有机化学家汪猷教授当时正在研究核酸课题。因为五种核柑中,有的核柑

西安光机所智能光学显微成像研究取得进展

近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利课题组在智能光学显微成像研究方面取得新进展。相关研究成果以Dual-wavelength in-line digital holography with untrained deep neural networks为题,在线

西安光机所智能光学显微成像研究取得进展

  近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利课题组在智能光学显微成像研究方面取得新进展。相关研究成果以Dual-wavelength in-line digital holography with untrained deep neural networks为题,

活体动物体内光学成像(八)

关于技术应用42. 可以用荧光素酶基因标记干细胞吗?如何标记? 可以,标记干细胞有几种方法。一种是标记组成性表达的基因,做成转基因小鼠,干细胞就被标记了,从此小鼠的骨髓取出造血干细胞,移植到另外一只小鼠的骨髓内,可以用该技术示踪造血干细胞在体内的增殖和分化及迁徙到全身的过程。另外一种方法是用慢病

西安光机所计算光学显微成像研究获进展

  使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。传统的数字病理学常使用高倍物镜和扫描拼接的方法以获得大视场、高分辨率图像,但高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,且大量的机械运动也会减缓成像的时间效率。同时,高倍物镜带来的景深狭小和机械扫描拼接带来的伪影

活体动物体内光学成像(三)

(2) 免疫学与干细胞研究将荧光素酶标记的造血干细胞移植入脾及骨髓,可用于实时观测活体动物体内干细胞造血过程的早期事件及动力学变化。有研究表明,应用带有生物发光标记基因的小鼠淋巴细胞,检测放射及化学药物治疗的效果,寻找在肿瘤骨髓转移及抗肿瘤免疫治疗中复杂的细胞机制。应用可见光活体成像原理标记细胞,建

成像光学元件的种类和选型小科普

  当我们听到诸如光学系统,光电倍增管,二极管的时候,是不是觉得这些词汇太过专业了,虽然物理课学过,但印象总是很朦胧。今天小编就带大家来了解一下这些词汇都是啥(当然物理专业大佬除外哈~~~)   光电倍增管-PMT   官方定义:光电倍增管是一种真空器件。它由光电发射阴极(光阴极)和聚焦电极、电