新型类脑晶体管模仿人类智能,可在室温下节能执行联想学习

美国西北大学、波士顿学院和麻省理工学院研究人员从人脑中汲取灵感,开发出一种能够进行更高层次思维的新型突触晶体管,可像人脑一样同时处理和存储信息。在新的实验中,研究人员证明晶体管对数据进行分类的能力,超越了简单的机器学习任务,并且能够执行联想学习。研究成果20日发表在《自然》杂志上。 尽管之前的研究已利用类似的策略来开发类脑计算设备,但这些晶体管只能在低温之下运行。相比来说,新设备在室温下运行很稳定。它在快速运行时消耗的能量很少,即使断电也能保留存储的信息,这使其成为实际应用中的理想选择。 研究团队探索了莫尔条纹物理学的新进展。莫尔条纹是一种几何设计,当两种图案相互层叠时就会出现。当二维材料堆叠时,会出现单独一层不存在的新特性。当这些层扭曲形成莫尔条纹时,电子特性前所未有的可调性成为可能。 对于新设备,研究人员结合了两种不同类型的原子薄材料:双层石墨烯和六方氮化硼。当堆叠并有目的地扭曲时,这些材料形成了莫尔条纹。研究人员......阅读全文

光栅尺莫尔条纹原理简介

  莫尔条纹  以透射光栅为例,当指示光栅上的线纹和标尺光栅上的线纹之间形成一个小角度θ,并且两个光栅尺刻面相对平行放置时,在光源的照射下,位于几乎垂直的栅纹上,形成明暗相间的条纹。这种条纹称为“莫尔条纹” (图2所示)。严格地说,莫尔条纹排列的方向是与两片光栅线纹夹角的平分线相垂直。莫尔条纹中两条

新型类脑晶体管模仿人类智能

原文地址:http://news.sciencenet.cn/htmlnews/2023/12/514635.shtm 类脑计算艺术图。图片来源:美国西北大学美国西北大学、波士顿学院和麻省理工学院研究人员从人脑中汲取灵感,开发出一种能够进行更高层次思维的新型突触晶体管,可像人脑一样同时处理和

新型类脑晶体管,实现像人脑一样的信息处理与存储功能

  美国西北大学、波士顿学院和麻省理工学院研究人员从人脑中汲取灵感,开发出一种能够进行更高层次思维的新型突触晶体管,可像人脑一样同时处理和存储信息。在新的实验中,研究人员证明晶体管对数据进行分类的能力,超越了简单的机器学习任务,并且能够执行联想学习。研究成果20日发表在《自然》杂志上。   尽管之前

新型类脑晶体管模仿人类智能,可在室温下节能执行联想学习

  美国西北大学、波士顿学院和麻省理工学院研究人员从人脑中汲取灵感,开发出一种能够进行更高层次思维的新型突触晶体管,可像人脑一样同时处理和存储信息。在新的实验中,研究人员证明晶体管对数据进行分类的能力,超越了简单的机器学习任务,并且能够执行联想学习。研究成果20日发表在《自然》杂志上。  尽管之前的

光栅尺位移传感器的工作原理

  莫尔条纹  以透射光栅为例,当指示光栅上的线纹和标尺光栅上的线纹之间形成一个小角度θ,并且两个光栅尺刻面相对平行放置时,在光源的照射下,位于几乎垂直的栅纹上,形成明暗相间的条纹。这种条纹称为“莫尔条纹” (右图所示)。严格地说,莫尔条纹排列的方向是与两片光栅线纹夹角的平分线相垂直。莫尔条纹中两条

海德汉HEIDENHAIN光栅尺的工作原理

  概念   光栅尺,也称为光栅尺位移传感器(光栅尺传感器),是利用光栅的光学原理工作的测量反馈装置。光栅尺经常应用于数控机床的闭环伺服系统中,可用作直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大,检测精度高,响应速度快的特点。例如,在数控机床中常用于对刀具和工件的坐标进行检

实验室检验检测设备光学尺

光学尺是上世纪70年代的日本产品,它是利用光栅的莫尔条纹和光电转换技术,在3mm的附法玻璃上镀铬刻1μ为一道的透明长度尺,然后把它粘在铝尺上。靠光折射或透射反馈到感应器中进行计量。 光栅尺传感器分为敞开式和封闭式两类。 数控加工中心,机床,磨床,铣床,自动卸货机,金属板压制和焊接机,机器人和自动化科

光栅的基本工作原理

1、莫尔条纹  光栅是利用莫尔条纹现象来进行测量的。所谓莫尔(Moire),法文的原意是水面上产生的波纹。莫尔条纹是指两块光栅叠合时,出现光的明暗相间的条纹,从光学原理来讲,如果光栅栅距与光的波长相比较是很大的话,就可以按几何光学原理来进行分析。图1所示为两块栅距相等的光栅叠合在一起,并使它们的刻线

光栅尺的工作原理

  常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。当使指示光栅上的线纹与标尺光栅上的线纹成一角度来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交义。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。相反,距交叉点

光栅尺位移传感器的工作原理、分类及应用

  光栅尺位移传感器,也称光栅尺、光栅尺传感器,是利用莫尔条纹的光学原理,对物体位置移动的测量反馈装置。通过检测莫尔条纹个数,来“读取”光栅刻度,然后再根据驱动电路的作用,计算出物体的位移和速度。  (莫尔条纹原理:是两条线或两个物体之间,以恒定的角度和频率发生干涉的视觉结果。当人眼无法分辨这两条线

直线透射光栅的工作原理

如图1所示为莫尔条纹的形成原理。将长光栅和短光栅重叠在一起,中间保持0.01mm-0.1mm的间隙,并使两光栅的线纹相对转过一个很小的夹角。当光线平行照射光栅时,由于光的透射及衍射效应,在与线纹垂直的方向上,准确地说,在与两光栅线纹夹角θ的平分线相垂直的方向上,会出现明暗交替、间隔相等的粗条纹,这就

直线透射光栅的工作原理

如图1所示为莫尔条纹的形成原理。将长光栅和短光栅重叠在一起,中间保持0.01mm-0.1mm的间隙,并使两光栅的线纹相对转过一个很小的夹角。当光线平行照射光栅时,由于光的透射及衍射效应,在与线纹垂直的方向上,准确地说,在与两光栅线纹夹角θ的平分线相垂直的方向上,会出现明暗交替、间隔相等的粗条纹,这就

位移传感器信号处理

  辨向原理  在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方

位移传感器信号处理

  在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个 光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有 π/2相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方波信号u

国人发Nature:首次揭示光子莫尔晶格中波的演化规律

  近日,Nature(《自然》)在线发表了以“Localization and delocalization of light in photonic moire lattices”为题的研究成果。  论文的第一作者是王鹏博士生和郑远林助理研究员。论文的合作者包括上海交通大学陈险峰教授、山西长治学

光栅尺位移传感器的结构是怎样的呢?

   光栅尺位移是由标尺光栅和光栅读数头两部分组成。    标尺光栅一般固定在机床活动部件上,光栅读数头装在机床固定部件上,指示光栅装在光栅读数头中。    光栅尺位移传感器的结构。    常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。    (关于莫尔条纹的原理,可参考相关

光栅尺电子细分与判向法相关内容

  电子细分与判向法  光栅测量位移的实质是以光栅栅距为一把标准尺子对位称量进行测量。高分辨率的光栅尺一般造价较贵,且制造困难。为了提高系统分辨率,需要对莫尔条纹进行细分,光栅尺传感器系统多采用电子细分方法。当两块光栅以微小倾角重叠时,在与光栅刻线大致垂直的方向上就会产生莫尔条纹,随着光栅的移动,莫

舍莫尔试验的正常值

  正常为10-15mm,

舍莫尔试验的注意事项

  不合宜人群:这个没什么范围规定,眼睛没事就不必要检查。  检查前禁忌:按摩者将手指甲剪干净并洗净。  检查时要求:根据不同病因进行对症治疗与处理,去除病因。

舍莫尔试验的临床意义

  异常结果:泪腺萎缩的结果是泪腺分泌功能减退,泪液减少,出现异物感,干涩畏光等眼的一系列症状。  需要检查的人群:干燥综合征,泪腺萎缩,角结膜干燥症或其他眼睛疾病。

舍莫尔试验的检查过程

  注意泪腺有无肿物,泪点大小、位置和泪囊部皮肤的变化,指压泪囊部有无分泌物从泪点溢出。可用荧光素钠或红汞液滴眼,2分钟后观察预置于鼻腔卞鼻道中的棉片是否着色,以判断泪道是否通畅,或用泪道冲洗法判断阻塞部位。

什么是白光条纹?

白光是由可见光区各种波长的光按一定比例组成。只有当对可见光区各种波长光的光程差等于零或等于几个波长时,才可能观察到白光的干涉条纹。

白光条纹的定义

白光是由可见光区各种波长的光按一定比例组成。只有当对可见光区各种波长光的光程差等于零或等于几个波长时,才可能观察到白光的干涉条纹。

白光条纹的定义

白光是由可见光区各种波长的光按一定比例组成。只有当对可见光区各种波长光的光程差等于零或等于几个波长时,才可能观察到白光的干涉条纹。以杨氏干涉实验为例,说明白光干涉条纹的特点。在这种装置中,当以单色光照明狭缝时,在屏上呈现出明暗相间的、与狭缝平行的直条纹;而当以白光照明狭缝时,则得数目不多的彩色直条纹

白光条纹的特征

白光条纹之所以具有这样的特点,是因为所有波长光的零级干涉条纹都重合在一起,而同一波长的相邻条纹间的间隔又与波长成正比。附图以干涉光强分布曲线表示出白光干涉的这种特点。为简明起见,画出两个不同波长的干涉光强分布。实线代表较短波长的光的强度分布,虚线代表较长波长的光的强度分布。如果画出白光中各种波长光的

干涉条纹的应用

干涉现象及干涉条纹的出现对于光学测量微小变形具有重要意义,牛顿环、劈尖干涉等都可以经过简单改造制成测量微小变形的仪器。由于其方式是将距离转化为条纹数与光波长的函数,故精度很高,可以达到光波长量级。如图1为牛顿环的干涉条纹。同时也广泛应用于生活中。如车窗玻璃的反射膜,是利用膜两侧反射光波叠加削弱来达到

白光条纹的特征

白光条纹之所以具有这样的特点,是因为所有波长光的零级干涉条纹都重合在一起,而同一波长的相邻条纹间的间隔又与波长成正比。附图以干涉光强分布曲线表示出白光干涉的这种特点。为简明起见,画出两个不同波长的干涉光强分布。实线代表较短波长的光的强度分布,虚线代表较长波长的光的强度分布。如果画出白光中各种波长光的

薄膜干涉条纹间距

因为等厚干涉现象的两任意相邻条纹之间的厚度差等于λ/2,即薄膜层介质中光的波长的一半,而条纹间距△X*sinΘ=λ/2因为角度小的时候可以认为sinΘ=Θ,所以推出:△X=λ/2Θ

薄膜干涉条纹间距

因为等厚干涉现象的两任意相邻条纹之间的厚度差等于λ/2,即薄膜层介质中光的波长的一半,而条纹间距△X*sinΘ=λ/2因为角度小的时候可以认为sinΘ=Θ,所以推出:△X=λ/2Θ

光纤电流传感器的原理及优缺点是怎样的呢

   光栅尺位移是由标尺光栅和光栅读数头两部分组成。    标尺光栅一般固定在机床活动部件上,光栅读数头装在机床固定部件上,指示光栅装在光栅读数头中。    光栅尺位移传感器的结构。    常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。    (关于莫尔条纹的原理,可参考相关