比微塑料更小!科学家首次获得纳米塑料清晰图像

微塑料被科学家形象地称为“海洋中的PM2.5”,威胁着海洋生态系统,也对人类健康产生威胁。比微塑料更小的颗粒是纳米塑料,它对生物体的毒性可能更大。近日,科学家从海水样本中首次获得纳米塑料的清晰图像,发现它们在形状和化学成分上具有惊人的多样性。相关成果发表于《科学进展》。 全球每年有40万~400万吨塑料垃圾进入海洋,紫外线和海洋湍流将这些塑料分解成看不见的微颗粒。随着时间的推移,微塑料会分解成更小的颗粒。目前一般将尺寸在1~5000微米的塑料颗粒称为微塑料,小于1微米的称为纳米塑料。例如,一次性聚苯乙烯(PS)咖啡杯盖在老化箱中只需要大约2个月就可以分解成纳米塑料。纳米塑料示意图。图片来源:圣母大学 有研究表明,微塑料和纳米塑料对生物体的毒性和颗粒大小与形态呈反比,体积越小,毒性可能越大。 “纳米塑料的毒性可能比较大的塑料颗粒更大。”美国圣母大学教授Tengfei Luo说:“它们的体积小,能够更好地穿透生物体的组织。......阅读全文

比微塑料更小!科学家首次获得纳米塑料清晰图像

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517622.shtm微塑料被科学家形象地称为“海洋中的PM2.5”,威胁着海洋生态系统,也对人类健康产生威胁。比微塑料更小的颗粒是纳米塑料,它对生物体的毒性可能更大。近日,科学家从海水样本中首次获得纳米塑

比微塑料更小!科学家首次获得纳米塑料清晰图像

  微塑料被科学家形象地称为“海洋中的PM2.5”,威胁着海洋生态系统,也对人类健康产生威胁。比微塑料更小的颗粒是纳米塑料,它对生物体的毒性可能更大。近日,科学家从海水样本中首次获得纳米塑料的清晰图像,发现它们在形状和化学成分上具有惊人的多样性。相关成果发表于《科学进展》。  全球每年有40万~40

便携式拉曼光谱系统,助力微塑料快速检测

  前段时间,一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,进一步引发了微塑料对人体健康长期影响的担忧。我国高度重视微塑料对环境、人体影响的监测工作,越来越多研究机构已经开始布局微塑料研究。  微塑料是指粒径小于5 mm的塑料颗粒,往往难以肉眼分辨,而拉曼

便携式拉曼光谱系统,助力微塑料快速检测

  前段时间,一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,进一步引发了微塑料对人体健康长期影响的担忧。我国高度重视微塑料对环境、人体影响的监测工作,越来越多研究机构已经开始布局微塑料研究。  微塑料是指粒径小于5 mm的塑料颗粒,往往难以肉眼分辨,而拉曼

拉曼光谱帮助识别环境中的塑料微粒

  塑料广泛用于产品和包装。 不幸的是,这些进入环境并造成重大污染,不仅作为散装材料,而且作为微塑料:小的,难以察觉的颗粒。 丹麦的一家研究机构正在使用雷尼绍的拉曼光谱系统来帮助其客户了解并减少环境中微塑料的数量。  这是一个研究领域,在分析和识别方面存在许多不确定性。微塑料对人体健康的影响尚不明确

微塑料和纳米塑料对土壤变形虫产生影响

  纳米和微塑料已经成为一个严重的全球问题,威胁着我们的生活环境。已有的研究表明,许多生物体,包括细菌、动物和植物,都会受到微塑料的影响。然而,人们对土壤生物中一个重要的生态类群——原生生物是否会受到微塑料的影响还知之甚少。  近日,中山大学环境科学与工程学院贺志理、舒龙飞团队就聚苯乙烯微塑料和纳米

拉曼光谱技术

1. 拉曼点扫面积有多大?显微镜物镜出口的激光光斑的直径约1-2微米。拉曼成像的区域大小更多取决于自动平台的移动范围,尺度和自动平台相关,有75X50mm,100X80mm,300X300mm等选择。2. 表面增强拉曼能否表征金膜表面修饰的单分子层自组装膜的形态?如膜的缺陷可以,前提是你的单分子膜有

南极海域发现微塑料:别让微塑料再“漂流”

  近日,在“向阳红01”船上执行中国首次环球海洋综合科考任务的科考队员在南极地区海水中发现了微塑料的存在。  这种被定义为直径小于5毫米的塑料纤维、颗粒或者薄膜的微塑料,并不是第一次在南极被科学家发现。2016年,日本九州大学与东京海洋大学公布的调查结果显示,南极海域漂浮着微塑料。当时,研究人员就

微区拉曼光谱仪

  微区拉曼光谱仪是一种用于材料科学领域的分析仪器,于2003年11月8日启用  技术指标  配有双激光器:514nm和785nm; 拉曼位移范围:50~4000cm-1; 显微尺寸范围:0.1微米*0.1微米; 光谱分辨率:1cm-1。  主要功能  拉曼光谱和红外光谱相配合可全面地研究分子运动状

拉曼光谱技术综述

   【摘要】本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。综述了近年来了曼技术的主要的分析技术。涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。  1、拉曼光谱的发展简史  印度物理学家拉曼于1928年

【技术干货】拉曼光谱

   原理  光照射到物质上发生弹性散射和非弹性散射。弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。拉曼光谱,是对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。  显微共焦三级拉曼光谱仪

非接触亚微米分辨红外拉曼同步测量在解决微塑料监测...

非接触亚微米分辨红外拉曼同步测量在解决微塑料监测难题的应用近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海国家和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到

微塑料怎么研磨

使用浸入式液氮冷冻研磨仪。微塑料是一种工业制品,可以使用浸入式液氮冷冻研磨仪研磨,这款仪器体积小方便携带,拥有三项专利,真正的液氮冷冻。

拉曼光谱仪氧化亚铜纳米线的拉曼光谱研究

介绍     氧化亚铜为一价铜的氧化物,是鲜红色粉末状固体,几乎不溶于水,在酸性溶液中化为二价铜。它是一种重要的P型半导体材料,禁带宽度仅为2.1eV,光电转换效率可达到18%。1998年氧化亚铜被发现可作为催化剂在阳光下将水分解成氢气和氧气,证明是一种极具前景的光催化氧化材料。现今,随着纳

拉曼光谱仪氧化亚铜纳米线的拉曼光谱研究

氧化亚铜为一价铜的氧化物,是鲜红色粉末状固体,几乎不溶于水,在酸性溶液中化为二价铜。它是一种重要的P型半导体材料,禁带宽度仅为2.1eV,光电转换效率可达到18%。1998年氧化亚铜被发现可作为催化剂在阳光下将水分解成氢气和氧气,证明是一种极具前景的光催化氧化材料。现今,随着纳米材料的发展,不仅已经

拉曼光谱的分析技术

几种重要的拉曼光谱分析技术1、单道检测的拉曼光谱分析技术2、以CCD为代表的多通道探测器的拉曼光谱分析技术3、采用傅立叶变换技术的FT-Raman光谱分析技术4、共振拉曼光谱分析技术5、表面增强拉曼效应分析技术拉曼光谱用于分析的优点和缺点 1、拉曼光谱用于分析的优点拉曼光谱的分析方法不需要对样品进行

拉曼光谱的分析技术

几种重要的拉曼光谱分析技术1、单道检测的拉曼光谱分析技术2、以CCD为代表的多通道探测器的拉曼光谱分析技术3、采用傅立叶变换技术的FT-Raman光谱分析技术4、共振拉曼光谱分析技术5、表面增强拉曼效应分析技术拉曼光谱用于分析的优点和缺点 1、拉曼光谱用于分析的优点拉曼光谱的分析方法不需要对样品进行

拉曼光谱技术知识

  拉曼光谱仪该仪器以其结构简单、操作简便、测量快速高效准确,以低波数测量能力著称;采用共焦光路设计以获得更高分辨率,可对样品表面进行um级的微区检测,也可用此进行显微影像测量。主要适用于科研院所、高等院校物理和化学实验室、生物及医学领域等光学方面,研究物质成分的判定与确认;还可以应用于刑侦及珠宝行

拉曼光谱的分析技术

几种重要的拉曼光谱分析技术1、单道检测的拉曼光谱分析技术2、以CCD为代表的多通道探测器的拉曼光谱分析技术3、采用傅立叶变换技术的FT-Raman光谱分析技术4、共振拉曼光谱分析技术5、表面增强拉曼效应分析技术拉曼光谱用于分析的优点和缺点1、拉曼光谱用于分析的优点拉曼光谱的分析方法不需要对样品进行前

拉曼光谱测定实验技术

1.1样品的准备检测拉曼光谱时一般不需要制备样品,特别是带有显微镜的激光拉曼光谱仪。在检测时,样品是固体,只需要将样品直接放在测样品台上进行测试。如果是液体样品并且是易挥发的,可先将其倒入一个无色透明的玻璃瓶,盖好瓶盖,然后放在测样品台上进行检测。如果液体样品是不易挥发的,可将其倒入一个小的培养皿中

拉曼光谱测定实验技术

  1样品的准备  检测拉曼光谱时一般不需要制备样品,特别是带有显微镜的激光拉曼光谱仪。在检测时,样品是固体,只需要将样品直接放在测样品台上进行测试。如果是液体样品并且是易挥发的,可先将其倒入一个无色透明的玻璃瓶,盖好瓶盖,然后放在测样品台上进行检测。如果液体样品是不易挥发的,可将其倒入一个小的培养

光谱成像技术创新应用快讯(SpectrAPP)—-微塑料分类检测

2004年,《Science》杂志发表了关于海洋水体和沉积物中塑料碎片的论文,首次提出了“微塑料”的概念。作为一种普遍存在的全球污染物,微塑料对人类健康构成潜在的威胁。《Environment International》甚至刊登论文,报告了科学家们首次在人类婴儿胎盘中发现了微型塑料颗粒的现

壳层隔绝纳米粒子增强拉曼光谱新技术

  中科院院士、厦门大学化学化工学院田中群教授课题组与美国佐治亚理工学院王中林教授课题组合作,在电化学控制条件下获得了多种分子或离子吸附在铂、金等单晶电极上的表面拉曼光谱,该新技术尚属首次,其研究成果发表在3月18日的英国《自然》杂志上。   表面增强拉曼光谱是一种非常强大的高灵敏分析技术,它可以

帝斯曼工程塑料瞄准医疗塑料市场

  全球高性能热塑性塑料供应商帝斯曼集团近日表示,当前公司工程塑料在医疗领域的市场份额及其有限。“然而,医疗领域是未来几年我们将要着重开发的目标市场。”帝斯曼欧洲区域销售经理Sander Brakel说道。   Brakel表示,公司拟将通过对现有产品在医疗领域中的应用范围以及产品自身质量和产能来进

拉曼光谱配件纳米海绵状SERS

完美适用于532,638和785拉曼,针对638nm的拉曼响应度最好; 更长的存放期,相对于纸质基板的1--3个月的保存期,SP 纳米海绵SERS可以在常温下存储6个月或更久适用于高能量激光,而且可以确保SERS的整个稳定性能不变,背景基线也非常低SERS作为拉曼增强的理想附件,是提高拉曼信号的最佳

拉曼课堂小知识(二)—拉曼光谱技术的特征

2.拉曼散射光谱具有哪些特征?a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振

拉曼课堂知识(四)—SERS表面增强拉曼光谱技术

表面增强拉曼光谱技术的原理?表面增强拉曼光谱是指将待测分子吸附在粗糙的纳米金属材料表面,可使待测物的拉曼信号增强10的6-15次方倍的光谱现象,解决了普通拉曼光谱灵敏度低的问题。SERS活性基底的制备是获得较高拉曼增强信号的前提条件,不同的增强基底对样品的增强效果差别很大,SERS活性基底的材料、

拉曼光谱

一、拉曼光谱的基本原理用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。1.瑞利散射散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能

拉曼光谱

一、拉曼光谱的基本原理用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。1.瑞利散射散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能

拉曼光谱

1、单道检测的拉曼光谱分析技术。2、以CCD为代表的多通道探测器的拉曼光谱分析技术。3、采用傅立叶变换技术的FT-Raman光谱分析技术。4、共振拉曼光谱分析技术。5、表面增强拉曼效应分析技术。