Nature:2024年值得关注的七项技术,它是核心

随着人工智能(AI)技术的不断突破和大型模型的层出不穷,AI受到了前所未有的关注。面对这一浪潮,人们不禁好奇:未来究竟会是什么样子?为了解答这一问题,《Nature》杂志发布了未来的一年里,将密切关注以下七个技术领域。核心技术创新集中在人工智能领域,更是引领未来发展的重要力量。从蛋白质工程到3D打印再到深度伪造(deepfake),这些领域都将取得新的突破和进步。 面向蛋白质设计的深度学习 二十年前,西雅图华盛顿大学的大卫·贝克(David Baker)和他的同事们取得了一项里程碑式的壮举:他们使用计算工具从头开始设计了一种全新的蛋白质。“Top7”如预测的那样折叠,但它是惰性的:它没有执行有意义的生物学功能。如今,从头蛋白质设计已经成熟为一种实用工具,用于生成定制酶和其他蛋白质。“这是非常强大的,”华盛顿大学的生物化学家尼尔·金说,他与贝克的团队合作设计了基于蛋白质的疫苗和药物递送载体。“一年半前不可能的事情——现在你......阅读全文

Nature发布2024年值得关注的七大技术,首位中国科学家成果入选

  2024年1月22日,《自然》发布了2024年值得关注的七大技术——大片段DNA插入、人工智能设计蛋白质、脑机接口、 细胞图谱、超高分辨率显微成像、3D打印纳米材料和DeepFake检测。七大技术中,生物医学领域就占了五项。与往年相比,今年最大的变化在于,人工智能(AI)的进步成为许多令人兴奋的

Nature:3D打印更强钛合金

  在所有的金属3D打印材料中,钛被广泛用于航空航天、汽车、医疗等领域,尤其是外科手术用的植入体。除了材料本身密度小、强度高、耐腐蚀的优点外,更重要的是,与传统的加工方法(如数控机床和铸造)相比,钛合金3D打印可以实现复杂的几何形状,而且费用低廉。2014年,世界首例3D打印钛枢椎椎体植入手术在北京

Nature:实体瘤3D模型展现癌症“进化之路”

  近日,来自美国的研究人员在著名国际学术期刊nature上发表了一项最新研究进展,他们开发了一种计算机模型能够同时反映实体瘤的3D形状和遗传进化。这一新模型的建立对于解释癌细胞中为什么存在很多遗传突变,驱动性突变如何在整个肿瘤中传播以及肿瘤的药物抗性如何进化等疑难问题具有重要意义。   虽然之

预测蛋白质3D结构,单条蛋白质序列就能实现

7月22日,华深智药对外宣布,公司在蛋白质结构预测方面开发出一项新技术OmegaFold,突破了已有计算机预测三维结构的模式,是人工智能(AI)和生命科学领域结合实现的一个突破。华深智药是由清华大学人工智能产业研究院孵化,是一家致力于使用AI重构药物开发流程来提高新药研发速度和效率的企业。日前,华深

Nature子刊:生物3D打印再升级,重塑人耳!

  从材料学、航空领域、工业器械到生物行业,3D打印技术正以热门、创新的姿态渗入其中。同时,生物3D打印是再生医学、器官移植领域不可忽视的一种新兴力量。不少实验室都将生物3D技术构建组织、器官作为研究课题,致力于突破组织工程学的局限和难题。  作为再生医学的热门“利器”,目前的三维打印技术虽然实现了

Nature:蛋白质内稳态走向全面

  Morimoto和同事试图确定秀丽隐杆线虫中的一个组织中的扰动对邻近组织中的热休克反应的激活具有一种影响。为了实现这一目的,他们研究了一种温度敏感突变体肌球蛋白重链B(UNC-54,一种秀丽隐杆线虫HSP90同族体的肌肉特定介质蛋白)的表达效果。相比于野生型,HSP90 mRNA的水平在突变

Nature子刊:新型3D疫苗横扫癌症、艾滋病

  癌症如此致命的其中一个原因就是,它可以逃避机体免疫系统的攻击,使得肿瘤能够旺盛生长及扩散。科学家们一直在设法尝试利用免疫疗法来诱导免疫系统进入到抗癌攻击模式,建立起对癌细胞的长期免疫抵抗。  现在,来自Wyss生物启发工程研究所和哈佛大学工程与应用科学学院的研究人员证实,非手术注射可在体内自发组

nature:3D图像首次揭示细胞中DNA的折叠特征

  在最近一项研究中,科学家们首次通过模拟哺乳动物单个细胞基因组的物理结构,给我们展示了关于DNA在细胞中包装的独特视角。  通过这项新的技术,科学家们能够理解细胞中染色体的组合方式,以及决定细胞活化或者不活化的分子基础。  目前该技术仅仅在小鼠的细胞上进行了试验,不过它能够清楚地帮助我们理解动物生

Nature:科学家首次获得完整透明的3D大脑

  日前,斯坦福大学的一支跨学科研究小组将神经学与化学工程结合起来,开发了一种名为“CLARITY”的突破性技术,获得了透明而完整的小鼠大脑,这一新技术保留了大脑3D结构、神经回路及其他生物机制的完整性,展现了大脑中复杂的精细连接和分子结构。这一成就将转变我们研究大脑的方式,在此基础上,人们可以根据

Nature构建蛋白质分子“搜索网”

  来自华盛顿大学的科学家们,在实验室中利用计算机设计并建造出了能够识别和结合小分子的蛋白质分子“搜索网”。   用计算机设计出能够识别生物学小分子并能与之相互作用的蛋白质现在成为了现实。科学家们成功地构建出了一种蛋白质分子,其编程后可以结合三种不同的类固醇。这一成果有可能更广泛地应用于医学和其他

Nature年度技术:定向蛋白质组学

  时近岁末,各大杂志接连进行了年终盘点,此前出版的《Nature》杂志也对2012年进行了回顾,评点了2012年的科技进展,科技政策以及重要人物,中国科学家王俊入选了人物篇。同时《Nature Methods》也盘点了今年与明年的技术热点,选出了2012年度技术成果:定向蛋白质组学(targe

大难题告破,蛋白质3D结构可用AI解析

  DeepMind关于确定蛋白质3D形状的深度学习技术,可能将在生物学界掀起一场新的变革。图中蓝色为计算机预测的蛋白质结构,绿色为实验验证结果,二者相似度非常高。(图片来源:DeepMind) 生物学界最大的挑战之一——蛋白质三维结构解析如今有望被破解。借由深度学习程序AlphaFold,谷歌

Nature:首次利用3D打印制造高性能纳米结构合金

美国科研人员在《自然》(Nature)杂志上发表论文,介绍了3D打印一种双相纳米结构的高熵合金(HEA)的情况,该合金的强度和延展性都超过了其他增材制造材料。这一突破可以为航空航天、医药及能源等领域带来更高性能的零部件。  高熵合金由五种或五种以上等量或大约等量金属组成。研究人员将高熵合金(HEA)

Nature:2024年值得关注的七项技术,它是核心

  随着人工智能(AI)技术的不断突破和大型模型的层出不穷,AI受到了前所未有的关注。面对这一浪潮,人们不禁好奇:未来究竟会是什么样子?为了解答这一问题,《Nature》杂志发布了未来的一年里,将密切关注以下七个技术领域。核心技术创新集中在人工智能领域,更是引领未来发展的重要力量。从蛋白质工程到3D

Nature发布突破性蛋白质新技术

  斯克里普斯研究所(TSRI)的科学家们开发出了一种强大的新方法来寻找结合特定蛋白质的候选药物。  发表在本周《自然》(Nature)杂志上的这种新方法是一个重大的进展,它可以同时应用于大量的蛋白质,甚至直接应用于自然细胞环境中成千上万不同的蛋白质。一些小分子可以用来确定它们靶蛋白的功能,并可充当

《Nature》RNA调节蛋白质合成的隐藏信号

  RNA以A、U、C和G等基本核苷酸在细胞的蛋白质加工厂中指挥蛋白质生产。为了制造蛋白质,机器的一端先锁定在RNA上,然后扫描整条RNA,直到AUG字符串后停止扫描,AUG是将遗传密码翻译成蛋白质的开始信号。  在巡查第一个AUG位点时,蛋白质制造机器经常会遇到一个与AUG不同的字符串(如AUA)

蛋白质组学牛人Nature发表重要成果

  第一次结合两种新兴的大规模实验技术:多通道质谱分析法和具有高水平自然遗传多样性的小鼠种群,哈佛医学院(HMS)和Jackson实验室(JAX)的研究人员解决了生物学和医学中一个悬而未决的问题:遗传变异是如何影响蛋白质水平的?  蛋白质是构成所有细胞和生物结构与功能“零件表”的氨基酸链。因此,了解

Nature方法:发布蛋白质组检测新技术

  在Fred Hutchinson癌症研究中心癌症蛋白质组学专家Amanda Paulovich博士领导下,一个国际科学家研究小组证实了大规模、标准化蛋白质检测的可行性,这是验证疾病生物标志物和药物靶点的必要条件。   这项在线发表在12月8日《自然方法》(Nature Methods)

《Nature》:个体脑部前额3D类神经器官模型体外组装成功

  斯坦福大学Sergiu Pasca教授和其同事4月26日发表《Nature》文章,报道了新型“皿中疾病(disease-in-a-dish)”模型技术。研究人员将受试者的皮肤细胞培养成神经元后,再将这些神经元彼此连接,形成脑部3D类神经器官(或称作球形体)。虽然微小,但这些具有基本神经电路功能的

Nature:科学家用干细胞培育人脑发育3D模型

  一个国际研究团队使用干细胞成功培育出一个模仿人脑早期发育的3D结构。研究显示,这种“类脑器官(迷你大脑)”可以被用作微观分析人类遗传性疾病发病机理的模型系统。在罹患遗传性疾病的人群中,其大脑体积明显缩小。   该研究由奥地利分子生物技术研究所的Juergen Knoblich牵头,并联合英

Nature:科学家再构建蛋白质-“遗传图谱”

  6月6日,《自然》杂志发表了一项由剑桥大学和默沙东的科学家领导完成的重要成果:他们成功创建出人类蛋白质的第一个详细遗传图谱。这一突破性研究有望增进我们对各种疾病的了解,并有助于新药的开发。   DOI: 10.1038/s41586-018-0175-2   这项研究描述了人类血浆“蛋

Nature:用于蛋白质分析的单分子DNA技术

  George Church 及同事开发出用于并行蛋白相互作用分析、借助用于蛋白功能分析的单分子DNA方法的一个“单分子相互作用测序”(SMI-seq)技术。  SMI-seq的工作原理是,通过核糖体显示或酶结合将蛋白耦合到DNA识别符或“条码”上。  这些条码化的蛋白然后在水溶液中被一起分析,并

Nature子刊:蛋白质分析的强大工具

  科学家们一直对细胞中的蛋白质互作有着浓厚的兴趣,因为蛋白质互作可以揭示最基础的生命功能,比如细胞分裂。  欧洲分子生物学实验室的科学家们开发了在活细胞中研究蛋白质行为的新技术,这项研究发表在三月十七日的Nature Biotechnology杂志上。这一技术首次允许人们实时跟踪推动一个生物学过程

Nature子刊:选择性操控蛋白质修饰

  蛋白质的活性受到严格的调控。错误或不充分的蛋白质调控可能会导致失控性的生长,由此引起癌症或是慢性炎症。近日,来自苏黎世大学兽医生物化学和分子生物学研究所的研究人员发现了一些可以调控医学重要蛋白活性的酶。这一研究发现使得研究人员能够非常有选择地操控这些蛋白,为炎症及癌症开辟了新的治疗方法。   

Nature:科学家再构建蛋白质-“遗传图谱”

  6月6日,《自然》杂志发表了一项由剑桥大学和默沙东的科学家领导完成的重要成果:他们成功创建出人类蛋白质的第一个详细遗传图谱。这一突破性研究有望增进我们对各种疾病的了解,并有助于新药的开发。   DOI: 10.1038/s41586-018-0175-2   这项研究描述了人类血浆“蛋白质组

Nature:科学家再构建蛋白质-“遗传图谱”

  《自然》杂志发表了一项由剑桥大学和默沙东的科学家领导完成的重要成果:他们成功创建出人类蛋白质的第一个详细遗传图谱。这一突破性研究有望增进我们对各种疾病的了解,并有助于新药的开发。   DOI: 10.1038/s41586-018-0175-2   这项研究描述了人类血浆“蛋白质组”(pro

Nature子刊:选择性操控蛋白质修饰

  蛋白质的活性受到严格的调控。错误或不充分的蛋白质调控可能会导致失控性的生长,由此引起癌症或是慢性炎症。近日,来自苏黎世大学兽医生物化学和分子生物学研究所的研究人员发现了一些可以调控医学重要蛋白活性的酶。这一研究发现使得研究人员能够非常有选择地操控这些蛋白,为炎症及癌症开辟了新的治疗方法。   

Nature-Communications:研究揭示MBC中的蛋白质特征

  转移性乳腺癌(MBC)是一种极具侵袭性的三阴性肿瘤(TNBC),其定义为梭形、鳞状或肉瘤样组织学的转移性成分。支撑MBC病理亚型和转移行为的蛋白质谱尚不清楚。本期iProteome为大家带来的是今年发表在Nature Communications上的一项关于乳腺癌的研究,本研究中,研究者采用基于

Nature-Methods-|-朝思暮想:单细胞蛋白质组测序之梦

  近期,Nature Methods 杂志技术编辑Vivien Marx发表文章 A dream of single-cell proteomics,探讨了单细胞蛋白组学的发展,提出了该技术有可能会面对的问题和潜在解决方案。单细胞蛋白质组测序的梦想并不遥远(Credit: S. Larochell

Nature发表蛋白质互作里程碑成果

  德克萨斯大学和多伦多大学的科学家们日前绘制了超大规模的蛋白质互作图谱。这项研究发表在九月七日的Nature杂志上,为研究阿尔茨海默症、帕金森症和癌症等疾病的提供了强大的新工具。  细胞中的蛋白通常以蛋白复合体的形式,执行特异性的生物学功能。研究人员发现,海葵、线虫、小鼠和人类共享近千种关键的蛋白