Antpedia LOGO WIKI资讯

地球上的金子从哪来

金子常被看作财富象征。马克思说:“货币天然是金银。”那么,金子来自哪里?美国研究人员说,地球上所有金子可能都是中子星碰撞爆炸的产物。 金子不仅在地球上罕见,在宇宙中同样罕见。科学家此前已知道,恒星内部的聚变反应可产生碳与氧等轻元素,却无法产生金这样的重元素。美国研究人员的一项天文观测则揭开了金子这一重元素的身世。 中子星是巨大恒星发生超新星爆发后留下的密度超大核心,两颗中子星的碰撞会产生伽马射线暴。美国哈佛—史密森天体物理学中心研究人员说,今年6月,他们借助美国航天局SWIFT卫星,观测到一次伽马射线暴。这一代号为GRB 130603B的伽马射线暴距地球约39亿光年,持续时间不到0.2秒,但其红外线余晖却持续数天时间。 研究人员解释说,中子星碰撞后会喷射出富含中子的物质,这些物质产生的放射性元素在衰变时就会发出这种红外线余晖。这项研究的第一作者埃多·贝格尔说:“这是首次观测到这种余晖,以及碰撞如何产生重......阅读全文

地球上的金子从哪来

  金子常被看作财富象征。马克思说:“货币天然是金银。”那么,金子来自哪里?美国研究人员说,地球上所有金子可能都是中子星碰撞爆炸的产物。   金子不仅在地球上罕见,在宇宙中同样罕见。科学家此前已知道,恒星内部的聚变反应可产生碳与氧等轻元素,却无法产生金这样的重元素。美国研究人员的一项天文观测则揭开

金子般的进球,金子般的分析方法

  一、事由   今天清晨5:20分醒了,马上打开电视机观看世界杯德国和阿根廷的决赛。不久,就看到德国队的格策在113分钟打进金子般的一球,载入史册的进球,让德国队第4次获大力神杯。   二、我想说   1、 我始终期望德国队获胜   我不是足球球迷,但德国人严谨的性格,让我对德国

千金子的介绍

  千金子(学名:Euphorbia lathyris L,别名:续随子)是禾本科大戟属植物,主要分布于中国陕西、山东、江苏、安徽、浙江、中国台湾、福建、江西、湖北、湖南、四川、云南、广西、广东等省区。  千金子秆直立,基部膝曲或倾斜,高可达90厘米,平滑无毛;叶鞘无毛,大多短于节间;叶舌膜质,叶片

千金子的形态特征

  一年生。秆直立,基部膝曲或倾斜,高30-90厘米,平滑无毛。叶鞘无毛,大多短于节间;叶舌膜质,长1-2毫米,常撕裂具小纤毛;叶片扁平或多少卷折,先端渐尖,两面微粗糙或下面平滑,长5-25厘米,宽2-6毫米。  圆锥花序长10-30厘米,分枝及主轴均微粗糙;小穗多带紫色,长2-4毫米,含3-7小花

千金子(中药)的生长环境

  产于吉林、辽宁、内蒙古、河北、陕西、甘肃、新疆、山东、江苏、安徽、浙江、江西、福建、河南、湖北、湖南、广西、四川、贵州、云南、西藏等地,栽培或逸为野生广泛分布或栽培于欧洲、北非、中亚、东亚和南北美洲。

千金子(中药)的生理特性

  二年生草本,全株无毛。根柱状,长20厘米以上,直径3-7毫米,侧根多而细。茎直立,基部单一,略带紫红色,顶部二歧分枝,灰绿色,高可达1米。叶交互对生,于茎下部密集,于茎上部稀疏,线状披针形,长6-10厘米,宽4-7毫米,先端渐尖或尖,基部半抱茎,全缘;侧脉不明显;无叶柄;总苞叶和茎叶均为2枚,卵

最大伽马射线计划全球“相亲”

CTA将是现有全球最大的伽马射线捕获设备,它将在南北半球各设立一座天文台。  一个颇具雄心壮志的项目计划建造两座相同的天文台,以探测来自深空的伽马射线——高能光子。该项目已进入重要阶段,27国成员必须从9个可行地点中选出两个,建造切伦科夫望远镜阵列(CTA)。各国争相为这些耗资2亿欧

碰撞冲击试验机做碰撞冲击试验的意义

 碰撞冲击试验机做碰撞冲击试验的意义  碰撞试验设备可以是振动台或者沖击台,但是考虑到设备需要能够持续反复执行特定标准的碰撞,由于冲击台的效率相对较低,所以普遍采用振动台进行相应的改动来满  足碰撞事件的要求。  碰撞台只会配备垂直方向的台面,且只能够进行垂直方向的碰撞试验,其它轴向的碰撞试验只能够

5克金子/5克银子的教授帽子

  一、先向你请教  如果你的哥哥有两个选择,一是耶鲁大学的终身教授,另一是县城公安局副局长,你希望你哥是耶鲁教授,还是县副局长?  二、事由  昨天到朝阳图书馆借阅杂志,《人物周刊》2012年43期,刊登了记者张蕾采访耶鲁海归博士,现任教于长江商学院金融系主任的曹辉宁教授(19

千金子的作用是什么

  千金子具有逐水消肿、破血消癥的功效和作用。在临床应用中,主要用于身体患有水肿、痰饮、积滞腹胀、小便和大便不通,身体患有血瘀、闭经症状。另外对于身体患有顽固性皮肤真菌感染、病毒性感染引起的皮肤疣状、疣赘等增生物有良好的治疗作用。另外千金子有强烈的刺激味道,对于胃肠道有明显的刺激,会产生蠕动加快,引

研究发现新星爆发产生伽马射线

  一个国际天文研究小组13日报告说,该小组在不久前观测某新星爆发时,发现爆发区域产生了高能量的伽马射线。这一现象十分罕见。   日本京都大学、广岛大学和美国、欧洲天文机构的研究者13日在美国《科学》杂志上发表论文指出,今年3月,日本天文爱好者发现天鹅座出现新星爆发。研究小组用20

“奇怪”伽马射线暴挑战起源模型

中新网北京12月8日电 (记者 孙自法)国际著名学术期刊《自然》及专业期刊《自然-天文学》最新发表针对伽马射线暴(GRB)的5篇天文学论文,共同描述了一个起源更像短伽马射线暴的长伽马射线暴。这项新发现的“奇怪”伽马射线暴研究结果,挑战了一直以来认为的传统观点——这类事件的持续时间可以直接归因于其假定

碰撞冲击试验机的机械冲击、碰撞试验的试验步骤

 碰撞冲击试验机是结合冲击试验与碰撞试验多功能设计的试验设备,采用全气动驱动,机构简单,可靠性高,碰撞波形好,操作简便。连续冲击试验效率高,碰撞频率高可达60次/分,冲击试验高测试速度可达10次/分。可执行单次冲击、连续冲击、间隔冲击,实现多种冲击模式,良好的重复性、低能耗设计、无污染、环保,且无须

伽马射线暴电磁能爆发:时间在其中似乎会倒退重复

   伽马射线暴是宇宙中最明亮和最具能量的事件,但只有在射线束直接指向地球时才能被探测到。  北京时间8月17日消息,据国外媒体报道,科学家发现,从太空深处发出的伽马射线暴表现出了一些前所未有的奇异行为。多年前,科学家鉴别了6次极高能量的电磁能爆发,而这些爆发显示了复杂的时间可逆性波状行为(时间在这

一类新的伽马射线源

  据一项新的研究报道,通常与像超新星等极端猛烈爆炸有关的高能伽马射线如今在3个经典新星中得到报告。文章的作者说,这也许是这类能量较低天文源的常态。经典新星会在某单一恒星在由某伴星给予的材料点燃而突然变亮时出现。在2012年和2013年,在费米伽马射线太空望远镜上的大视场望远镜检测到了来自3颗经典新

短伽马射线暴的准周期振荡

美国马里兰大学帕克分校的Cecilia Chirenti和合作者报告了在两个短伽玛射线暴中探测到的振荡信号,它们可能是在两个中子星合并形成大质量中子星的过程中产生的。这为研究伽玛射线暴事件的性质提供了机会。相关研究1月10日发表于《自然》。 中子星(大质量恒星在生命末期的致密核)的碰撞,有时会在

重元素多星系也有伽马射线爆发

  日本研究人员在21日的美国专业期刊《天体物理学杂志》网络版上发表文章指出,在重元素含量高的星系中,也会发生伽马射线爆发。   而此前人们一直认为,伽马射线爆发是伴随着重元素含量很少的大质量恒星发生超新星爆发而出现的现象。   来自日本京都大学、国立天文台、东京工业大学等机构的

研究限定印欧碰撞时限

  新生代以来,印度和欧亚板块的碰撞形成了壮阔的青藏高原,印欧碰撞时限研究是热点科学问题之一。但目前大多数碰撞年代的研究集中于藏南地区,且存在争议。为避开争议研究区,中科院地质与地球物理研究所副研究员靳春胜及其合作者选择了远离印欧碰撞缝合带的可可西里盆地开展年代学研究,从沉积学角度限定印欧碰撞时限。

伽马射线暴首次在实验室再现

  据美国趣味科学网站1月17日报道,一个国际科研团队借助地球上最强烈的激光,首次在实验室中制造出“迷你”版伽马射线暴,证实了目前用于研究伽马射线爆发的模型是正确的。新研究有助进一步理解黑洞的属性,以及宇宙的诞生甚至演化历程。  伽马射线暴是光的强烈爆发,是人们观测到的最明亮事件,持续时间仅几秒,有

研究发现伽马射线爆发时有强大磁场参与

  日本研究人员日前宣布,他们弄清了宇宙中最强的爆炸现象——伽马射线爆发的部分机制,即在伽马射线爆发时可能有强大磁场参与。这一成果将有助于弄清伽马射线爆发的详细机制。   伽马射线爆发被认为主要在离地球100亿光年以外的太空中发生。当质量相当于太阳30倍以上的巨大恒星寿命终结,发生超新星爆发并产生

俄罗斯投资建伽马射线观测台

  据伊尔库茨克大学介绍,该校申报的伽马射线观测台项目已通过俄教科部评比。2015年前,项目组将从联邦财政获取9000万卢布资金支持,用于在布里亚特通卡谷地建造伽马射线观测台——Tunka HiSCORE。通过这个观测台,希望能就宇宙的过去、现在和未来扑捉到全新的信息。   2009年,为研究

自由基碰撞原子化

大量H·自由基的增加有助于原子化,被认为是自由基碰撞原子化机理的有力论据。Dědina及Rube ška对富燃氢-氧焰所提出的H·自由基可能是火焰反应区内游离基所致。这就很好地解释氢化物原子化时,H2的存在必要条件,以及02的作用和石英管表面的影响。石英在温度为1000℃ 时具有很强的催化作用,H·

肾上腺碰撞瘤CT表现分析

肾上腺碰撞瘤(adrenal collision tumor)较罕见,源于皮质腺瘤和髓质的嗜铬细胞瘤的肾上腺碰撞瘤仅见一例报道。笔者回顾性分析一例肾上腺碰撞瘤的临床及CT表现,旨在增加对肾上腺碰撞瘤的认识。 1.病例资料 患者,女,50岁,B超体检发现左侧肾上腺占位1d。患者既往有地中海贫血(轻度)

伽马射线探测器初定“两口之家”

CTA将在南北半球各建立一个望远镜阵列       当超高能的伽马射线猛烈撞击地球大气层时,它们会引发粒子雨,并释放出一种昏暗的蓝光。利用这种光,天文学家可以追踪罕见的伽马射线(每平方米的大气每月只会发生几次撞击)直至它们的源头——宇宙中的一些剧烈事件,例如特大质量黑洞。不过,研究人员必须首先为计划

宇宙最大谜团之一伽马射线暴来源确定?

  据英国《自然·天文学》杂志近日在线发表的一篇论文,科学家最新发现一个尘气涡旋遮蔽了一对相互绕行的大质量恒星。测量该星云的速度显示,其中至少一颗恒星的转速,足以使之在发生超新星爆发时发射出持久的伽马射线暴。该研究为人类寻找银河系伽马射线暴的来源提供了一个迄今最强有力的“候选目标”。  伽马射线暴是

天地联合!我国观测到迄今最亮伽马射线暴

日前,记者从中国科学院高能物理研究所获悉,10月9日21点17分,高海拔宇宙线观测站(LHAASO,拉索)、高能爆发探索者(HEBS)和慧眼卫星(Insight-HXMT)同时探测到迄今最亮的伽马射线暴(编号GRB 221009A)。这是我国首次实现对伽马射线暴的天地多手段联合观测,并独家实现了从最

“慧眼”和“极目”精确探测迄今最亮伽马射线暴

原文地址:http://news.sciencenet.cn/htmlnews/2023/3/497266.shtm 北京时间3月29日凌晨2点,中国科学院高能物理研究所(简称高能所)与全球40余家科研机构联合发布对迄今最亮伽马射线暴(简称伽马暴)GRB 221009A的研究成果。高能所牵头研制

新突破!我国观测到迄今最亮伽马射线暴

 图①:科学载荷“高能爆发探索者”(示意图)。  图②:“慧眼”卫星(示意图)。  图③:中国高海拔宇宙线观测站(“拉索”)。  以上均为中科院高能所供图  制图:张丹峰  中国科学院高能物理研究所负责建设和运行管理的中国高海拔宇宙线观测站(“拉索”)、科学载荷“高能爆发探索者”和“慧眼”卫星三大科